Use structured outputs with Pydantic models instead of text parsing

This commit is contained in:
2025-12-08 12:21:51 -05:00
parent 6a6d2caa4a
commit 4df7bb42b4
3 changed files with 287 additions and 51 deletions

View File

@@ -290,7 +290,11 @@ class ClaudeCode(PrecompiledProgram):
return ClaudeSDKClient(options=options) return ClaudeSDKClient(options=options)
def _build_prompt(self, input_value: str) -> str: def _build_prompt(self, input_value: str) -> str:
"""Build prompt from signature docstring, field descriptions, and input value.""" """Build prompt from signature docstring, field descriptions, and input value.
Note: When using structured outputs, the SDK handles JSON formatting automatically
via the output_format parameter, so we don't add JSON instructions to the prompt.
"""
prompt_parts = [] prompt_parts = []
# add signature docstring if present # add signature docstring if present
@@ -325,20 +329,18 @@ class ClaudeCode(PrecompiledProgram):
if output_desc: if output_desc:
prompt_parts.append(f"\nPlease produce the following output: {output_desc}") prompt_parts.append(f"\nPlease produce the following output: {output_desc}")
# for Pydantic outputs, add explicit JSON instructions # Don't add JSON instructions - the SDK handles structured outputs via output_format
if self.output_format: # The schema is passed through ClaudeAgentOptions and enforced by the SDK
schema = self.output_format["schema"]
prompt_parts.append(
f"\nYou MUST respond with ONLY valid JSON matching this schema:\n"
f"{json.dumps(schema, indent=2)}\n\n"
f"Do not include any explanatory text, markdown formatting, or code blocks. "
f"Return ONLY the raw JSON object."
)
return "\n\n".join(prompt_parts) return "\n\n".join(prompt_parts)
def _get_output_format(self) -> Optional[dict[str, Any]]: def _get_output_format(self) -> Optional[dict[str, Any]]:
"""Get output format configuration for structured outputs.""" """Get output format configuration for structured outputs.
Supports:
- Direct Pydantic models: MyModel
- Generic types: list[MyModel], dict[str, MyModel]
"""
output_type = self.output_field.annotation output_type = self.output_field.annotation
if is_pydantic_model(output_type): if is_pydantic_model(output_type):
@@ -350,43 +352,68 @@ class ClaudeCode(PrecompiledProgram):
return None return None
async def _run_async(self, prompt: str) -> tuple[str, list[TraceItem], Usage]: async def _run_async(
"""Run the agent asynchronously and collect results.""" self, prompt: str
) -> tuple[str | dict | list | None, list[TraceItem], Usage]:
"""Run the agent asynchronously and collect results.
Returns:
- response: For structured outputs, returns dict/list from structured_output.
For text outputs, returns string from result or text blocks.
- trace: Execution trace items
- usage: Token usage statistics
"""
print(f"[ClaudeCode._run_async] Initializing client (connected={self._is_connected})")
# create client if needed # create client if needed
if self._client is None: if self._client is None:
print(f"[ClaudeCode._run_async] Creating new ClaudeSDKClient")
self._client = self._create_client() self._client = self._create_client()
# connect if not already connected # connect if not already connected
if not self._is_connected: if not self._is_connected:
print(f"[ClaudeCode._run_async] Connecting to Claude SDK...")
await self._client.connect() await self._client.connect()
self._is_connected = True self._is_connected = True
print(f"[ClaudeCode._run_async] Connected successfully")
# send query (output_format already configured in options) # send query (output_format already configured in options)
print(f"[ClaudeCode._run_async] Sending query to agent...")
await self._client.query(prompt) await self._client.query(prompt)
print(f"[ClaudeCode._run_async] Query sent, waiting for response...")
# collect messages and build trace # collect messages and build trace
trace: list[TraceItem] = [] trace: list[TraceItem] = []
usage = Usage() usage = Usage()
response_text = "" response_text = ""
structured_output = None
message_count = 0
async for message in self._client.receive_response(): async for message in self._client.receive_response():
message_count += 1
# handle assistant messages # handle assistant messages
if isinstance(message, AssistantMessage): if isinstance(message, AssistantMessage):
print(f"[ClaudeCode._run_async] Received AssistantMessage #{message_count} with {len(message.content)} blocks")
for block in message.content: for block in message.content:
if isinstance(block, TextBlock): if isinstance(block, TextBlock):
print(f"[ClaudeCode._run_async] - TextBlock: {len(block.text)} chars")
response_text += block.text response_text += block.text
trace.append( trace.append(
AgentMessageItem(text=block.text, model=message.model) AgentMessageItem(text=block.text, model=message.model)
) )
elif isinstance(block, ThinkingBlock): elif isinstance(block, ThinkingBlock):
print(f"[ClaudeCode._run_async] - ThinkingBlock: {len(block.thinking)} chars")
trace.append( trace.append(
ThinkingItem(text=block.thinking, model=message.model) ThinkingItem(text=block.thinking, model=message.model)
) )
elif isinstance(block, ToolUseBlock): elif isinstance(block, ToolUseBlock):
# Handle StructuredOutput tool (contains JSON response) print(f"[ClaudeCode._run_async] - ToolUseBlock: {block.name} (id={block.id})")
# handle StructuredOutput tool (contains JSON response)
if block.name == "StructuredOutput": if block.name == "StructuredOutput":
# The JSON is directly in the tool input (already a dict) # the JSON is directly in the tool input (already a dict)
response_text = json.dumps(block.input) response_text = json.dumps(block.input)
print(f"[ClaudeCode._run_async] StructuredOutput captured ({len(response_text)} chars)")
trace.append( trace.append(
ToolUseItem( ToolUseItem(
@@ -396,11 +423,12 @@ class ClaudeCode(PrecompiledProgram):
) )
) )
elif isinstance(block, ToolResultBlock): elif isinstance(block, ToolResultBlock):
print(f"[ClaudeCode._run_async] - ToolResultBlock: tool_use_id={block.tool_use_id}, is_error={block.is_error}")
content_str = "" content_str = ""
if isinstance(block.content, str): if isinstance(block.content, str):
content_str = block.content content_str = block.content
elif isinstance(block.content, list): elif isinstance(block.content, list):
# Extract text from content blocks # extract text from content blocks
for item in block.content: for item in block.content:
if ( if (
isinstance(item, dict) isinstance(item, dict)
@@ -410,7 +438,7 @@ class ClaudeCode(PrecompiledProgram):
trace.append( trace.append(
ToolResultItem( ToolResultItem(
tool_name="", # Tool name not in ToolResultBlock tool_name="", # tool name not in ToolResultBlock
tool_use_id=block.tool_use_id, tool_use_id=block.tool_use_id,
content=content_str, content=content_str,
is_error=block.is_error or False, is_error=block.is_error or False,
@@ -419,9 +447,11 @@ class ClaudeCode(PrecompiledProgram):
# handle result messages (final message with usage info) # handle result messages (final message with usage info)
elif isinstance(message, ResultMessage): elif isinstance(message, ResultMessage):
print(f"[ClaudeCode._run_async] Received ResultMessage (is_error={getattr(message, 'is_error', False)})")
# store session ID # store session ID
if hasattr(message, "session_id"): if hasattr(message, "session_id"):
self._session_id = message.session_id self._session_id = message.session_id
print(f"[ClaudeCode._run_async] - Session ID: {self._session_id}")
# extract usage # extract usage
if hasattr(message, "usage") and message.usage: if hasattr(message, "usage") and message.usage:
@@ -433,6 +463,7 @@ class ClaudeCode(PrecompiledProgram):
), ),
output_tokens=usage_data.get("output_tokens", 0), output_tokens=usage_data.get("output_tokens", 0),
) )
print(f"[ClaudeCode._run_async] - Usage: {usage.input_tokens} in, {usage.output_tokens} out, {usage.cached_input_tokens} cached")
# check for errors # check for errors
if hasattr(message, "is_error") and message.is_error: if hasattr(message, "is_error") and message.is_error:
@@ -441,25 +472,40 @@ class ClaudeCode(PrecompiledProgram):
if hasattr(message, "result") if hasattr(message, "result")
else "Unknown error" else "Unknown error"
) )
print(f"[ClaudeCode._run_async] - ERROR: {error_msg}")
trace.append( trace.append(
ErrorItem(message=error_msg, error_type="execution_error") ErrorItem(message=error_msg, error_type="execution_error")
) )
raise RuntimeError(f"Agent execution failed: {error_msg}") raise RuntimeError(f"Agent execution failed: {error_msg}")
# extract result if present (for structured outputs from result field) # Prefer structured_output over result (when using output_format)
# Note: structured outputs may come from StructuredOutput tool instead if hasattr(message, "structured_output") and message.structured_output is not None:
if hasattr(message, "result") and message.result: structured_output = message.structured_output
print(f"[ClaudeCode._run_async] - Structured output captured: {type(structured_output).__name__} ({len(str(structured_output))} chars)")
# Fallback to result field for text outputs
elif hasattr(message, "result") and message.result:
response_text = message.result response_text = message.result
print(f"[ClaudeCode._run_async] - Result extracted from message ({len(response_text)} chars)")
# handle system messages # handle system messages
elif isinstance(message, SystemMessage): elif isinstance(message, SystemMessage):
print(f"[ClaudeCode._run_async] Received SystemMessage")
# log system messages to trace but don't error # log system messages to trace but don't error
if hasattr(message, "data") and message.data: if hasattr(message, "data") and message.data:
data_str = str(message.data) data_str = str(message.data)
print(f"[ClaudeCode._run_async] - Data: {data_str[:100]}..." if len(data_str) > 100 else f"[ClaudeCode._run_async] - Data: {data_str}")
trace.append( trace.append(
AgentMessageItem(text=f"[System: {data_str}]", model="system") AgentMessageItem(text=f"[System: {data_str}]", model="system")
) )
print(f"[ClaudeCode._run_async] Completed: {message_count} messages processed, {len(trace)} trace items")
# Return structured_output if available (for Pydantic outputs), otherwise text
if structured_output is not None:
print(f"[ClaudeCode._run_async] Returning structured output")
return structured_output, trace, usage
else:
print(f"[ClaudeCode._run_async] Returning text response")
return response_text, trace, usage return response_text, trace, usage
def forward(self, **kwargs: Any) -> Prediction: def forward(self, **kwargs: Any) -> Prediction:
@@ -480,6 +526,8 @@ class ClaudeCode(PrecompiledProgram):
>>> print(result.trace) # List of execution items >>> print(result.trace) # List of execution items
>>> print(result.usage) # Token usage stats >>> print(result.usage) # Token usage stats
""" """
print(f"\n[ClaudeCode.forward] Called with fields: {list(kwargs.keys())}")
# extract input value # extract input value
if self.input_field_name not in kwargs: if self.input_field_name not in kwargs:
raise ValueError( raise ValueError(
@@ -488,11 +536,14 @@ class ClaudeCode(PrecompiledProgram):
) )
input_value = kwargs[self.input_field_name] input_value = kwargs[self.input_field_name]
print(f"[ClaudeCode.forward] Input field '{self.input_field_name}': {input_value[:100]}..." if len(str(input_value)) > 100 else f"[ClaudeCode.forward] Input field '{self.input_field_name}': {input_value}")
# build prompt # build prompt
prompt = self._build_prompt(input_value) prompt = self._build_prompt(input_value)
print(f"[ClaudeCode.forward] Built prompt ({len(prompt)} chars): {prompt[:200]}...")
# run async execution in event loop # run async execution in event loop
print(f"[ClaudeCode.forward] Starting async execution (model={self.model})")
try: try:
loop = asyncio.get_event_loop() loop = asyncio.get_event_loop()
if loop.is_running(): if loop.is_running():
@@ -511,19 +562,37 @@ class ClaudeCode(PrecompiledProgram):
# no event loop, create one # no event loop, create one
response_text, trace, usage = asyncio.run(self._run_async(prompt)) response_text, trace, usage = asyncio.run(self._run_async(prompt))
# Log response details
response_type = type(response_text).__name__
response_len = len(str(response_text)) if response_text else 0
print(f"[ClaudeCode.forward] Received response (type={response_type}, {response_len} chars, {len(trace)} trace items)")
print(f"[ClaudeCode.forward] Token usage: {usage.input_tokens} input, {usage.output_tokens} output, {usage.cached_input_tokens} cached")
# parse response based on output type # parse response based on output type
output_type = self.output_field.annotation output_type = self.output_field.annotation
if is_pydantic_model(output_type): if is_pydantic_model(output_type):
print(f"[ClaudeCode.forward] Parsing structured output (type: {output_type})")
try: try:
# response_text can be dict/list (from structured_output) or str (legacy)
parsed_output = parse_json_response(response_text, output_type) parsed_output = parse_json_response(response_text, output_type)
print(f"[ClaudeCode.forward] Successfully parsed structured output")
except Exception as e: except Exception as e:
print(f"[ClaudeCode.forward] ERROR: Failed to parse structured output")
raise ValueError( raise ValueError(
f"Failed to parse Claude response as {output_type.__name__}: {e}\n" f"Failed to parse Claude response as {output_type}: {e}\n"
f"Response type: {type(response_text)}\n"
f"Response: {response_text}" f"Response: {response_text}"
) )
else: else:
print(f"[ClaudeCode.forward] Extracting text response (output type: {output_type})")
# string output - extract text # string output - extract text
if isinstance(response_text, str):
parsed_output = extract_text_from_response(response_text) parsed_output = extract_text_from_response(response_text)
else:
# Shouldn't happen, but handle gracefully
parsed_output = str(response_text)
print(f"[ClaudeCode.forward] Returning Prediction with session_id={self._session_id}\n")
# return prediction with typed output, trace, and usage # return prediction with typed output, trace, and usage
return Prediction( return Prediction(
@@ -545,6 +614,8 @@ class ClaudeCode(PrecompiledProgram):
Returns: Returns:
Prediction with typed output, trace, and usage Prediction with typed output, trace, and usage
""" """
print(f"\n[ClaudeCode.aforward] Called with fields: {list(kwargs.keys())}")
# extract input value # extract input value
if self.input_field_name not in kwargs: if self.input_field_name not in kwargs:
raise ValueError( raise ValueError(
@@ -553,26 +624,47 @@ class ClaudeCode(PrecompiledProgram):
) )
input_value = kwargs[self.input_field_name] input_value = kwargs[self.input_field_name]
print(f"[ClaudeCode.aforward] Input field '{self.input_field_name}': {input_value[:100]}..." if len(str(input_value)) > 100 else f"[ClaudeCode.aforward] Input field '{self.input_field_name}': {input_value}")
# build prompt # build prompt
prompt = self._build_prompt(input_value) prompt = self._build_prompt(input_value)
print(f"[ClaudeCode.aforward] Built prompt ({len(prompt)} chars)")
# run async execution # run async execution
print(f"[ClaudeCode.aforward] Starting async execution (model={self.model})")
response_text, trace, usage = await self._run_async(prompt) response_text, trace, usage = await self._run_async(prompt)
# Log response details
response_type = type(response_text).__name__
response_len = len(str(response_text)) if response_text else 0
print(f"[ClaudeCode.aforward] Received response (type={response_type}, {response_len} chars, {len(trace)} trace items)")
print(f"[ClaudeCode.aforward] Token usage: {usage.input_tokens} input, {usage.output_tokens} output, {usage.cached_input_tokens} cached")
# parse response based on output type # parse response based on output type
output_type = self.output_field.annotation output_type = self.output_field.annotation
if is_pydantic_model(output_type): if is_pydantic_model(output_type):
print(f"[ClaudeCode.aforward] Parsing structured output (type: {output_type})")
try: try:
# response_text can be dict/list (from structured_output) or str (legacy)
parsed_output = parse_json_response(response_text, output_type) parsed_output = parse_json_response(response_text, output_type)
print(f"[ClaudeCode.aforward] Successfully parsed structured output")
except Exception as e: except Exception as e:
print(f"[ClaudeCode.aforward] ERROR: Failed to parse structured output")
raise ValueError( raise ValueError(
f"Failed to parse Claude response as {output_type.__name__}: {e}\n" f"Failed to parse Claude response as {output_type}: {e}\n"
f"Response type: {type(response_text)}\n"
f"Response: {response_text}" f"Response: {response_text}"
) )
else: else:
print(f"[ClaudeCode.aforward] Extracting text response (output type: {output_type})")
# string output - extract text # string output - extract text
if isinstance(response_text, str):
parsed_output = extract_text_from_response(response_text) parsed_output = extract_text_from_response(response_text)
else:
# Shouldn't happen, but handle gracefully
parsed_output = str(response_text)
print(f"[ClaudeCode.aforward] Returning Prediction with session_id={self._session_id}\n")
# return prediction with typed output, trace, and usage # return prediction with typed output, trace, and usage
return Prediction( return Prediction(

View File

@@ -27,24 +27,96 @@ class Usage:
def is_pydantic_model(type_hint: Any) -> bool: def is_pydantic_model(type_hint: Any) -> bool:
"""Check if a type hint is a Pydantic model.""" """Check if a type hint is a Pydantic model or contains one (e.g., list[Model]).
Returns True for:
- Pydantic models: MyModel
- Generic types containing Pydantic: list[MyModel], dict[str, MyModel]
"""
try: try:
return isinstance(type_hint, type) and issubclass(type_hint, BaseModel) # Direct Pydantic model
if isinstance(type_hint, type) and issubclass(type_hint, BaseModel):
return True
# Generic type (list, dict, etc.)
origin = get_origin(type_hint)
if origin is not None:
args = get_args(type_hint)
# Check if any type argument is a Pydantic model
for arg in args:
if isinstance(arg, type) and issubclass(arg, BaseModel):
return True
return False
except TypeError: except TypeError:
return False return False
def get_json_schema(pydantic_model: type[BaseModel]) -> dict[str, Any]: def get_json_schema(type_hint: Any) -> dict[str, Any]:
"""Generate JSON schema from Pydantic model. """Generate JSON schema from type hint.
Sets additionalProperties to false to match Codex behavior. Handles:
- Pydantic models: MyModel
- Generic types: list[MyModel], dict[str, MyModel]
Note: Claude API requires root type to be "object" for structured outputs (tools).
For list/dict types, we wrap them in an object with a single property.
Sets additionalProperties to false for all objects.
""" """
schema = pydantic_model.model_json_schema() origin = get_origin(type_hint)
args = get_args(type_hint)
# Recursively set additionalProperties: false for all objects # Handle generic types (list, dict, etc.)
if origin is list:
# list[Model] - wrap in object since API requires root type = "object"
# {"type": "object", "properties": {"items": {"type": "array", "items": {...}}}}
if args and isinstance(args[0], type) and issubclass(args[0], BaseModel):
model = args[0]
schema = {
"type": "object",
"properties": {
"items": {
"type": "array",
"items": model.model_json_schema()
}
},
"required": ["items"],
"additionalProperties": False
}
else:
raise ValueError(f"Unsupported list type: {type_hint}")
elif origin is dict:
# dict[str, Model] - wrap in object since API requires root type = "object"
# {"type": "object", "properties": {"values": {"type": "object", "additionalProperties": {...}}}}
if len(args) >= 2 and isinstance(args[1], type) and issubclass(args[1], BaseModel):
model = args[1]
schema = {
"type": "object",
"properties": {
"values": {
"type": "object",
"additionalProperties": model.model_json_schema()
}
},
"required": ["values"],
"additionalProperties": False
}
else:
raise ValueError(f"Unsupported dict type: {type_hint}")
elif isinstance(type_hint, type) and issubclass(type_hint, BaseModel):
# Direct Pydantic model - already an object
schema = type_hint.model_json_schema()
else:
raise ValueError(f"Unsupported type for structured output: {type_hint}")
# Recursively set additionalProperties: false for all nested objects
def set_additional_properties(obj: dict[str, Any]) -> None: def set_additional_properties(obj: dict[str, Any]) -> None:
if isinstance(obj, dict): if isinstance(obj, dict):
if obj.get("type") == "object": if obj.get("type") == "object" and "additionalProperties" not in obj:
obj["additionalProperties"] = False obj["additionalProperties"] = False
for value in obj.values(): for value in obj.values():
if isinstance(value, dict): if isinstance(value, dict):
@@ -58,14 +130,74 @@ def get_json_schema(pydantic_model: type[BaseModel]) -> dict[str, Any]:
return schema return schema
def parse_json_response(response: str, pydantic_model: type[BaseModel]) -> BaseModel: def parse_json_response(
"""Parse JSON response into Pydantic model. response: str | dict | list, type_hint: Any
) -> BaseModel | list[BaseModel] | dict[str, BaseModel]:
"""Parse JSON response into typed output.
Handles:
- Pydantic models: MyModel
- Generic types: list[MyModel], dict[str, MyModel]
Note: When schema has list/dict at root, the SDK wraps them in {"items": [...]}
or {"values": {...}} because API requires root type = "object".
Args:
response: JSON string or already-parsed dict/list from structured_output
type_hint: The output type annotation
Returns:
Validated and typed output
Raises: Raises:
json.JSONDecodeError: If response is not valid JSON json.JSONDecodeError: If response string is not valid JSON
pydantic.ValidationError: If JSON doesn't match model schema pydantic.ValidationError: If JSON doesn't match schema
""" """
return pydantic_model.model_validate_json(response) import json
origin = get_origin(type_hint)
args = get_args(type_hint)
# Parse string to dict/list if needed
if isinstance(response, str):
parsed = json.loads(response)
else:
parsed = response
# Handle list[Model]
if origin is list:
if args and isinstance(args[0], type) and issubclass(args[0], BaseModel):
model = args[0]
# Unwrap from {"items": [...]} if present (from structured_output)
if isinstance(parsed, dict) and "items" in parsed:
parsed = parsed["items"]
if not isinstance(parsed, list):
raise ValueError(f"Expected list, got {type(parsed)}")
return [model.model_validate(item) for item in parsed]
# Handle dict[str, Model]
elif origin is dict:
if len(args) >= 2 and isinstance(args[1], type) and issubclass(args[1], BaseModel):
model = args[1]
# Unwrap from {"values": {...}} if present (from structured_output)
if isinstance(parsed, dict) and "values" in parsed:
parsed = parsed["values"]
if not isinstance(parsed, dict):
raise ValueError(f"Expected dict, got {type(parsed)}")
return {key: model.model_validate(value) for key, value in parsed.items()}
# Handle direct Pydantic model
elif isinstance(type_hint, type) and issubclass(type_hint, BaseModel):
if isinstance(response, str):
return type_hint.model_validate_json(response)
else:
return type_hint.model_validate(parsed)
raise ValueError(f"Unsupported type for parsing: {type_hint}")
def extract_text_from_response(response: str) -> str: def extract_text_from_response(response: str) -> str:

38
main.py
View File

@@ -1,16 +1,21 @@
from claude_dspy import ClaudeCode, ClaudeCodeConfig from claude_dspy import ClaudeCode, ClaudeCodeConfig
from pydantic import BaseModel from pydantic import BaseModel, Field
from modaic import AutoProgram from modaic import AutoProgram
import dspy import dspy
class Output(BaseModel): class ErrorReport(BaseModel):
files: list[str] error: str = Field(..., description="Error message")
timestamp: str = Field(..., description="Timestamp of error")
line_located: int | None = Field(..., description="Line number where error occurred")
file_located: str | None = Field(..., description="File where error occurred")
description: str = Field(..., description="Description of errors")
reccomedated_fixes: list[str] = Field(..., description="List of recommended fixes")
class ClaudeCodeSignature(dspy.Signature): class ClaudeCodeSignature(dspy.Signature):
message: str = dspy.InputField(desc="Request to process") log_file: str = dspy.InputField(desc="Log file to process")
output: Output = dspy.OutputField(desc="List of files modified or created") output: list[ErrorReport] = dspy.OutputField(desc="list of error reports created")
def main(): def main():
@@ -23,25 +28,32 @@ def main():
signature=ClaudeCodeSignature, signature=ClaudeCodeSignature,
working_directory=".", working_directory=".",
permission_mode="acceptEdits", permission_mode="acceptEdits",
allowed_tools=["Read", "Bash", "Write"], allowed_tools=["Read", "Write", "Bash"],
) )
cc.push_to_hub( cc.push_to_hub(
"farouk1/claude-code", "farouk1/claude-code",
with_code=True, with_code=True,
commit_message="Add more functionality to signature description parsing", commit_message="Use structured outputs with Pydantic models instead of text parsing",
) )
# agent = AutoProgram.from_precompiled("farouk1/claude-code", signature=ClaudeCodeSignature, working_directory=".", permission_mode="acceptEdits", allowed_tools=["Read", "Write", "Bash"])
# Test the agent # agent = AutoProgram.from_precompiled("farouk1/claude-code", signature=ClaudeCodeSignature, working_directory=".", permission_mode="acceptEdits", allowed_tools=["Read", "Write", "Bash"])
result = cc(message="create a python program that prints 'Hello, World!' and save it to a file in this directory") """
print(result.output.files) print("Running Claude Code...")
print(result.output) result = cc(log_file="log.txt")
print(result.usage) print("Claude Code finished running!")
print("-" * 50)
print("Output: ", result.output)
print("Output type: ", type(result.output))
print("Usage: ", result.usage)
print("Output type: ", type(result.output))
print("-" * 50)
print() print()
print("Trace:") print("Trace:")
for i, item in enumerate(result.trace): for i, item in enumerate(result.trace):
print(f" {i}: {item}") print(f" {i}: {item}")
"""
if __name__ == "__main__": if __name__ == "__main__":