(no commit message)

This commit is contained in:
2025-12-05 13:22:15 -05:00
parent 9b0337d1b8
commit 722e5aba21
6 changed files with 578 additions and 40 deletions

566
README.md
View File

@@ -0,0 +1,566 @@
# ClaudeAgent - DSPy Module for Claude Code SDK
A DSPy module that wraps the Claude Code Python SDK with a signature-driven interface. Each agent instance maintains a stateful conversation session, making it perfect for multi-turn agentic workflows.
## Features
- **Signature-driven** - Use DSPy signatures for type safety and clarity
- **Stateful sessions** - Each agent instance = one conversation session
- **Smart schema handling** - Automatically handles str vs Pydantic outputs
- **Rich outputs** - Get typed results + execution trace + token usage
- **Multi-turn conversations** - Context preserved across calls
- **Output field descriptions** - Automatically enhance prompts
- **Async support** - Both sync and async execution modes
## Installation
```bash
# Install with uv
uv add claude-agent-sdk dspy nest-asyncio
# Or with pip
pip install claude-agent-sdk dspy nest-asyncio
```
**Prerequisites:**
- Python 3.10+
- Claude Code CLI installed (get it from [code.claude.com](https://code.claude.com))
- Anthropic API key set in `ANTHROPIC_API_KEY` environment variable
## Quick Start
### Basic String Output
```python
import dspy
from claude_agent import ClaudeAgent
# Define signature
sig = dspy.Signature('message:str -> answer:str')
# Create agent
agent = ClaudeAgent(sig, working_directory=".")
# Use it
result = agent(message="What files are in this directory?")
print(result.answer) # String response
print(result.trace) # Execution items
print(result.usage) # Token counts
```
### Structured Output with Pydantic
```python
from pydantic import BaseModel, Field
class BugReport(BaseModel):
severity: str = Field(description="critical, high, medium, or low")
description: str
affected_files: list[str]
sig = dspy.Signature('message:str -> report:BugReport')
agent = ClaudeAgent(sig, working_directory=".")
result = agent(message="Analyze the bug in error.log")
print(result.report.severity) # Typed access!
print(result.report.affected_files)
```
## API Reference
### ClaudeAgent
```python
class ClaudeAgent(dspy.Module):
def __init__(
self,
signature: str | type[Signature],
working_directory: str,
model: Optional[str] = None,
permission_mode: Optional[str] = None,
allowed_tools: Optional[list[str]] = None,
disallowed_tools: Optional[list[str]] = None,
sandbox: Optional[dict[str, Any]] = None,
system_prompt: Optional[str | dict[str, Any]] = None,
api_key: Optional[str] = None,
**kwargs: Any,
)
```
#### Parameters
**Required:**
- **`signature`** (`str | type[Signature]`)
- DSPy signature defining input/output fields
- Must have exactly 1 input field and 1 output field
- Examples:
- String format: `'message:str -> answer:str'`
- Class format: `MySignature` (subclass of `dspy.Signature`)
- **`working_directory`** (`str`)
- Directory where Claude will execute commands
- Example: `"."`, `"/path/to/project"`
**Optional:**
- **`model`** (`Optional[str]`)
- Model to use: `"sonnet"`, `"opus"`, `"haiku"`
- Default: Claude Code default (typically Sonnet)
- **`permission_mode`** (`Optional[str]`)
- Controls permission behavior:
- `"default"` - Standard permission checks
- `"acceptEdits"` - Auto-accept file edits
- `"plan"` - Planning mode (no execution)
- `"bypassPermissions"` - Bypass all checks (use with caution!)
- Default: `"default"`
- **`allowed_tools`** (`Optional[list[str]]`)
- List of allowed tool names
- Examples: `["Read", "Write", "Bash", "Glob"]`
- Default: All tools allowed
- **`disallowed_tools`** (`Optional[list[str]]`)
- List of disallowed tool names
- Default: `[]`
- **`sandbox`** (`Optional[dict[str, Any]]`)
- Sandbox configuration for command execution
- Example: `{"enabled": True, "network": {"allowLocalBinding": True}}`
- Default: `None`
- **`system_prompt`** (`Optional[str | dict[str, Any]]`)
- Custom system prompt or preset configuration
- String: Custom prompt
- Dict: Preset config like `{"type": "preset", "preset": "claude_code", "append": "..."}`
- Default: `None` (uses Claude Code default)
- **`api_key`** (`Optional[str]`)
- Anthropic API key
- Falls back to `ANTHROPIC_API_KEY` environment variable
- Default: `None`
- **`**kwargs`** - Additional `ClaudeAgentOptions` parameters
#### Methods
##### `forward(**kwargs) -> Prediction`
Execute the agent with an input message.
**Arguments:**
- `**kwargs` - Must contain the input field specified in signature
**Returns:**
- `Prediction` object with:
- **Typed output field** - Named according to signature (e.g., `result.answer`)
- **`trace`** - `list[TraceItem]` - Execution trace
- **`usage`** - `Usage` - Token usage statistics
**Example:**
```python
result = agent(message="Hello")
print(result.answer) # Access typed output
print(result.trace) # List of execution items
print(result.usage) # Token usage stats
```
##### `aforward(**kwargs) -> Prediction`
Async version of `forward()` for use in async contexts.
**Example:**
```python
async def main():
result = await agent.aforward(message="Hello")
print(result.answer)
```
#### Properties
##### `session_id: Optional[str]`
Get the session ID for this agent instance.
- Returns `None` until first `forward()` call
- Persists across multiple `forward()` calls
- Useful for debugging and logging
**Example:**
```python
agent = ClaudeAgent(sig, working_directory=".")
print(agent.session_id) # None
result = agent(message="Hello")
print(agent.session_id) # '0199e95f-2689-7501-a73d-038d77dd7320'
```
## Usage Patterns
### Pattern 1: Multi-turn Conversation
Each agent instance maintains a stateful session:
```python
agent = ClaudeAgent(sig, working_directory=".")
# Turn 1
result1 = agent(message="What's the main bug?")
print(result1.answer)
# Turn 2 - has context from Turn 1
result2 = agent(message="How do we fix it?")
print(result2.answer)
# Turn 3 - has context from Turn 1 + 2
result3 = agent(message="Write tests for the fix")
print(result3.answer)
# All use same session_id
print(agent.session_id)
```
### Pattern 2: Fresh Context
Want a new conversation? Create a new agent:
```python
# Agent 1 - Task A
agent1 = ClaudeAgent(sig, working_directory=".")
result1 = agent1(message="Analyze bug in module A")
# Agent 2 - Task B (no context from Agent 1)
agent2 = ClaudeAgent(sig, working_directory=".")
result2 = agent2(message="Analyze bug in module B")
```
### Pattern 3: Output Field Descriptions
Enhance prompts with field descriptions:
```python
class MySignature(dspy.Signature):
"""Analyze code architecture."""
message: str = dspy.InputField()
analysis: str = dspy.OutputField(
desc="A detailed markdown report with sections: "
"1) Architecture overview, 2) Key components, 3) Dependencies"
)
agent = ClaudeAgent(MySignature, working_directory=".")
result = agent(message="Analyze this codebase")
# The description is automatically appended to the prompt
```
### Pattern 4: Inspecting Execution Trace
Access detailed execution information:
```python
from claude_agent import ToolUseItem, ToolResultItem
result = agent(message="Fix the bug")
# Filter trace by type
tool_uses = [item for item in result.trace if isinstance(item, ToolUseItem)]
for tool in tool_uses:
print(f"Tool: {tool.tool_name}")
print(f"Input: {tool.tool_input}")
tool_results = [item for item in result.trace if isinstance(item, ToolResultItem)]
for result_item in tool_results:
print(f"Result: {result_item.content}")
print(f"Error: {result_item.is_error}")
```
### Pattern 5: Token Usage Tracking
Monitor API usage:
```python
result = agent(message="...")
print(f"Input tokens: {result.usage.input_tokens}")
print(f"Cached tokens: {result.usage.cached_input_tokens}")
print(f"Output tokens: {result.usage.output_tokens}")
print(f"Total: {result.usage.total_tokens}")
```
### Pattern 6: Safe Execution with Permissions
Control what the agent can do:
```python
# Read-only (safest)
agent = ClaudeAgent(
sig,
working_directory=".",
permission_mode="default",
allowed_tools=["Read", "Glob", "Grep"],
)
# Auto-accept file edits
agent = ClaudeAgent(
sig,
working_directory=".",
permission_mode="acceptEdits",
allowed_tools=["Read", "Write", "Edit"],
)
# Sandbox mode for command execution
agent = ClaudeAgent(
sig,
working_directory=".",
sandbox={"enabled": True},
)
```
## Advanced Examples
### Example 1: Code Review Agent
```python
from pydantic import BaseModel, Field
class CodeReview(BaseModel):
summary: str = Field(description="High-level summary")
issues: list[str] = Field(description="List of issues found")
severity: str = Field(description="critical, high, medium, or low")
recommendations: list[str] = Field(description="Actionable recommendations")
sig = dspy.Signature('message:str -> review:CodeReview')
agent = ClaudeAgent(
sig,
working_directory="/path/to/project",
model="sonnet",
permission_mode="default",
allowed_tools=["Read", "Glob", "Grep"],
)
result = agent(message="Review the changes in src/main.py")
print(f"Severity: {result.review.severity}")
for issue in result.review.issues:
print(f"- {issue}")
```
### Example 2: Iterative Debugging
```python
sig = dspy.Signature('message:str -> response:str')
agent = ClaudeAgent(
sig,
working_directory=".",
permission_mode="acceptEdits",
allowed_tools=["Read", "Write", "Bash"],
)
# Turn 1: Find the bug
result1 = agent(message="Find the bug in src/calculator.py")
print(result1.response)
# Turn 2: Propose a fix
result2 = agent(message="What's the best way to fix it?")
print(result2.response)
# Turn 3: Implement the fix
result3 = agent(message="Implement the fix")
print(result3.response)
# Turn 4: Write tests
result4 = agent(message="Write tests for the fix")
print(result4.response)
```
### Example 3: Async Usage
```python
import asyncio
async def main():
sig = dspy.Signature('message:str -> answer:str')
agent = ClaudeAgent(sig, working_directory=".")
# Use aforward in async context
result = await agent.aforward(message="Analyze this code")
print(result.answer)
# Cleanup
await agent.disconnect()
asyncio.run(main())
```
## Trace Item Types
When accessing `result.trace`, you'll see various item types:
| Type | Fields | Description |
|------|--------|-------------|
| `AgentMessageItem` | `text`, `model` | Agent's text response |
| `ThinkingItem` | `text`, `model` | Agent's internal reasoning |
| `ToolUseItem` | `tool_name`, `tool_input`, `tool_use_id` | Tool invocation |
| `ToolResultItem` | `tool_name`, `tool_use_id`, `content`, `is_error` | Tool result |
| `ErrorItem` | `message`, `error_type` | Error that occurred |
## How It Works
### Signature <20> Claude Flow
```
1. Define signature: 'message:str -> answer:str'
2. ClaudeAgent validates (must have 1 input, 1 output)
3. __init__ creates ClaudeSDKClient with options
4. forward(message="...") extracts message
5. If output field has desc <20> append to message
6. If output type ` str <20> generate JSON schema
7. Call client.query(message) with optional output_format
8. Iterate through receive_response(), collect messages
9. Parse response (JSON if Pydantic, str otherwise)
10. Return Prediction(output=..., trace=..., usage=...)
```
### Output Type Handling
**String output:**
```python
sig = dspy.Signature('message:str -> answer:str')
# No schema passed to Claude Code
# Response used as-is
```
**Pydantic output:**
```python
sig = dspy.Signature('message:str -> report:BugReport')
# JSON schema generated from BugReport
# Schema passed to Claude Code via output_format
# Response parsed with BugReport.model_validate_json()
```
## Troubleshooting
### Error: "ClaudeAgent requires exactly 1 input field"
Your signature has too many or too few fields. ClaudeAgent expects exactly one input and one output:
```python
# L Wrong - multiple inputs
sig = dspy.Signature('context:str, question:str -> answer:str')
#  Correct - single input
sig = dspy.Signature('message:str -> answer:str')
```
### Error: "Failed to parse Claude response as MyModel"
The model returned JSON that doesn't match your Pydantic schema. Check:
1. Schema is valid and clear
2. Field descriptions are helpful
3. Model has enough context to generate correct structure
### Error: "Claude Code CLI not found"
Install Claude Code CLI:
```bash
# Visit code.claude.com for installation instructions
# or use npm:
npm install -g @anthropic-ai/claude-code
```
### Async event loop issues
Use `aforward()` when already in an async context:
```python
# L Don't do this in async context
async def main():
result = agent(message="...") # Can cause issues
#  Do this instead
async def main():
result = await agent.aforward(message="...")
```
## Design Philosophy
### Why 1 input, 1 output?
ClaudeAgent is designed for conversational agentic workflows. The input is always a message/prompt, and the output is always a response. This keeps the interface simple and predictable.
For complex inputs, compose them into the message:
```python
# Instead of: 'context:str, question:str -> answer:str'
message = f"Context: {context}\n\nQuestion: {question}"
result = agent(message=message)
```
### Why stateful sessions?
Agents often need multi-turn context (e.g., "fix the bug" <20> "write tests for it"). Stateful sessions make this natural without manual history management.
Want fresh context? Create a new agent instance.
### Why return trace + usage?
Observability is critical for agentic systems. You need to know:
- What tools were used
- What the agent was thinking
- How many tokens were consumed
- If any errors occurred
The trace provides full visibility into agent execution.
## Comparison with CodexAgent
| Feature | CodexAgent | ClaudeAgent |
|---------|-----------|-------------|
| SDK | OpenAI Codex SDK | Claude Code Python SDK |
| Thread management | Built-in thread ID | Session-based (ClaudeSDKClient) |
| Streaming | Yes | Yes (via receive_response) |
| Async support | No | Yes (aforward) |
| Tool types | Codex-specific | Claude Code tools (Bash, Read, Write, etc.) |
| Sandbox | Simple mode enum | Detailed config dict |
| Permission control | Sandbox modes | Permission modes + allowed_tools |
## Examples Directory
Check out the `examples/` directory for more:
- `basic_string_output.py` - Simple string output
- `pydantic_output.py` - Structured Pydantic output
- `multi_turn_conversation.py` - Multi-turn conversation
- `output_field_description.py` - Using output field descriptions
- `inspect_trace.py` - Inspecting execution trace
- `code_review_agent.py` - Advanced code review agent
## Contributing
Issues and PRs welcome! This is an implementation of Claude Code SDK integration with DSPy.
## License
See LICENSE file.
## Related Documentation
- [Claude Code SDK API Reference](https://docs.claude.com/en/agent-sdk/python)
- [DSPy Documentation](https://dspy-docs.vercel.app/)
- [Claude Code Documentation](https://code.claude.com/docs)
---
**Note:** This is a community implementation of Claude Code SDK integration with DSPy, inspired by the CodexAgent design pattern.