Complete Migration

This commit is contained in:
2025-10-19 19:58:27 -04:00
parent 350a55141b
commit ae6c6adb30
12 changed files with 340 additions and 147 deletions

View File

@@ -27,7 +27,7 @@ AVAILABLE_MODELS: Dict[str, str] = {
"Gemini 2.5 Flash": "openrouter/google/gemini-2.5-flash",
"Gemini 2.5 Flash Lite": "openrouter/google/gemini-2.5-flash-lite",
"Gemini 2.5 Pro": "openrouter/google/gemini-2.5-pro",
"GPT-5": "openrouter/openai/gpt-5"
"GPT-5": "openrouter/openai/gpt-5",
}
# openrouter API configuration
@@ -45,7 +45,7 @@ DEFAULT_CATEGORIES: List[str] = [
"Engagement potential - how likely users are to like, retweet, or reply",
"Clarity and readability - how easy the tweet is to understand",
"Emotional impact - how well the tweet evokes feelings or reactions",
"Relevance to target audience - how well it resonates with intended readers"
"Relevance to target audience - how well it resonates with intended readers",
]
# error messages

View File

@@ -6,38 +6,37 @@ from .constants import MAX_SCORE
def format_evaluation_for_generator(evaluation: Optional[EvaluationResult]) -> str:
"""
Format an evaluation result as text for the generator module.
Args:
evaluation: The evaluation result to format
Returns:
Formatted string with category-by-category reasoning and scores
"""
if not evaluation or not evaluation.evaluations:
return ""
eval_lines = []
for eval in evaluation.evaluations:
eval_lines.append(f"{eval.category} (Score: {eval.score}/{MAX_SCORE}): {eval.reasoning}")
eval_lines.append(
f"{eval.category} (Score: {eval.score}/{MAX_SCORE}): {eval.reasoning}"
)
return "\n".join(eval_lines)
def build_settings_dict(
selected_model: str,
iterations: int,
patience: int,
use_cache: bool
selected_model: str, iterations: int, patience: int, use_cache: bool
) -> Dict[str, Any]:
"""
Build a settings dictionary for saving.
Args:
selected_model: The selected model name
iterations: Number of optimization iterations
patience: Patience threshold for early stopping
use_cache: Whether to use DSPy cache
Returns:
Dictionary containing all settings
"""
@@ -45,26 +44,26 @@ def build_settings_dict(
"selected_model": selected_model,
"iterations": iterations,
"patience": patience,
"use_cache": use_cache
"use_cache": use_cache,
}
def truncate_tweet(tweet: str, max_length: int, suffix: str = "...") -> str:
"""
Truncate a tweet to the maximum length with a suffix.
Args:
tweet: The tweet text to truncate
max_length: Maximum allowed length
suffix: Suffix to add when truncating (default: "...")
Returns:
Truncated tweet text
"""
tweet = tweet.strip()
if len(tweet) <= max_length:
return tweet
truncation_point = max_length - len(suffix)
return tweet[:truncation_point] + suffix
@@ -72,11 +71,11 @@ def truncate_tweet(tweet: str, max_length: int, suffix: str = "...") -> str:
def truncate_category_display(category: str, max_length: int = 30) -> str:
"""
Truncate a category name for display purposes.
Args:
category: The category name
max_length: Maximum display length (default: 30)
Returns:
Truncated category name with "..." if needed
"""

View File

@@ -3,27 +3,32 @@ from .models import EvaluationResult
from .modules import TweetGeneratorModule, TweetEvaluatorModule
from .helpers import format_evaluation_for_generator
class HillClimbingOptimizer:
"""Hill climbing optimizer for tweet improvement."""
def __init__(
self,
generator: TweetGeneratorModule,
evaluator: TweetEvaluatorModule,
categories: List[str],
max_iterations: int = 10,
patience: int = 5
patience: int = 5,
):
self.generator = generator
self.evaluator = evaluator
self.categories = categories
self.max_iterations = max_iterations
self.patience = patience
def optimize(self, initial_text: str) -> Iterator[Tuple[str, EvaluationResult, bool, int, Dict[str, str], Dict[str, str]]]:
def optimize(
self, initial_text: str
) -> Iterator[
Tuple[str, EvaluationResult, bool, int, Dict[str, str], Dict[str, str]]
]:
"""
Optimize tweet using hill climbing algorithm.
Yields:
Tuple of (current_tweet, evaluation_result, is_improvement, patience_counter, generator_inputs, evaluator_inputs)
"""
@@ -31,89 +36,114 @@ class HillClimbingOptimizer:
generator_inputs = {
"input_text": initial_text,
"current_tweet": "",
"previous_evaluation": ""
"previous_evaluation": "",
}
current_tweet = self.generator(
input_text=initial_text,
current_tweet="",
previous_evaluation=None
input_text=initial_text, current_tweet="", previous_evaluation=None
)
evaluator_inputs = {
"original_text": initial_text,
"current_best_tweet": "",
"tweet_text": current_tweet
"tweet_text": current_tweet,
}
current_score = self.evaluator(
tweet_text=current_tweet,
categories=self.categories,
original_text=initial_text,
current_best_tweet=""
current_best_tweet="",
)
best_tweet = current_tweet
best_score = current_score
patience_counter = 0
yield (current_tweet, current_score, True, patience_counter, generator_inputs, evaluator_inputs)
yield (
current_tweet,
current_score,
True,
patience_counter,
generator_inputs,
evaluator_inputs,
)
for iteration in range(1, self.max_iterations):
# Generate improved tweet with previous evaluation as feedback
try:
# Format evaluation for display in generator inputs
eval_text = format_evaluation_for_generator(best_score)
generator_inputs = {
"input_text": initial_text,
"current_tweet": best_tweet,
"previous_evaluation": eval_text
"previous_evaluation": eval_text,
}
candidate_tweet = self.generator(
input_text=initial_text,
current_tweet=best_tweet,
previous_evaluation=best_score
previous_evaluation=best_score,
)
# Evaluate candidate
evaluator_inputs = {
"original_text": initial_text,
"current_best_tweet": best_tweet,
"tweet_text": candidate_tweet
"tweet_text": candidate_tweet,
}
candidate_score = self.evaluator(
tweet_text=candidate_tweet,
categories=self.categories,
original_text=initial_text,
current_best_tweet=best_tweet
current_best_tweet=best_tweet,
)
# Check if candidate is better (hill climbing condition)
is_improvement = candidate_score > best_score
if is_improvement:
best_tweet = candidate_tweet
best_score = candidate_score
patience_counter = 0
yield (candidate_tweet, candidate_score, True, patience_counter, generator_inputs, evaluator_inputs)
yield (
candidate_tweet,
candidate_score,
True,
patience_counter,
generator_inputs,
evaluator_inputs,
)
else:
patience_counter += 1
yield (best_tweet, candidate_score, False, patience_counter, generator_inputs, evaluator_inputs)
yield (
best_tweet,
candidate_score,
False,
patience_counter,
generator_inputs,
evaluator_inputs,
)
# Early stopping if no improvement for 'patience' iterations
if patience_counter >= self.patience:
break
except Exception as e:
# If generation fails, yield current best
patience_counter += 1
evaluator_inputs = {
"original_text": initial_text,
"current_best_tweet": best_tweet,
"tweet_text": best_tweet
"tweet_text": best_tweet,
}
yield (best_tweet, best_score, False, patience_counter, generator_inputs, evaluator_inputs)
yield (
best_tweet,
best_score,
False,
patience_counter,
generator_inputs,
evaluator_inputs,
)
if patience_counter >= self.patience:
break

105
agent/index.py Normal file
View File

@@ -0,0 +1,105 @@
from modaic import PrecompiledAgent, PrecompiledConfig
from .modules import TweetGeneratorModule, TweetEvaluatorModule
from .models import EvaluationResult
from .hill_climbing import HillClimbingOptimizer
from typing import Optional, List
from .utils import get_dspy_lm
from .constants import DEFAULT_CATEGORIES, DEFAULT_ITERATIONS, DEFAULT_PATIENCE
class TweetOptimizerConfig(PrecompiledConfig):
lm: str = "openrouter/google/gemini-2.5-flash"
eval_lm: str = "openrouter/openai/gpt-5"
categories: List[str] = DEFAULT_CATEGORIES
max_iterations: int = DEFAULT_ITERATIONS
patience: int = DEFAULT_PATIENCE
class TweetOptimizerAgent(PrecompiledAgent):
config: TweetOptimizerConfig
current_tweet: str = ""
previous_evaluation: Optional[EvaluationResult] = None
def __init__(self, config: TweetOptimizerConfig, **kwargs):
super().__init__(config, **kwargs)
self.tweet_generator = TweetGeneratorModule()
self.tweet_evaluator = TweetEvaluatorModule()
# set up optimizer
self.optimizer = HillClimbingOptimizer(
generator=self.tweet_generator,
evaluator=self.tweet_evaluator,
categories=config.categories,
max_iterations=config.max_iterations,
patience=config.patience,
)
self.lm = config.lm
self.eval_lm = config.eval_lm
self.categories = config.categories
self.max_iterations = config.max_iterations
self.patience = config.patience
# initialize DSPy with the specified model
self.tweet_generator.set_lm(get_dspy_lm(config.lm))
self.tweet_evaluator.set_lm(get_dspy_lm(config.eval_lm))
def forward(
self,
input_text: str,
iterations: Optional[int] = None,
patience: Optional[int] = None,
) -> str:
"""Run full optimization process."""
max_iterations = iterations or self.max_iterations
patience_limit = patience or self.patience
results = {
"initial_text": input_text,
"final_tweet": "",
"best_score": 0.0,
"iterations_run": 0,
"early_stopped": False,
"scores_history": [],
"improvement_count": 0,
}
best_tweet = ""
best_score = 0.0
for iteration, (
current_tweet,
scores,
is_improvement,
patience_counter,
_,
_,
) in enumerate(self.optimizer.optimize(input_text)):
iteration_num = iteration + 1
results["iterations_run"] = iteration_num
results["scores_history"].append(scores)
if is_improvement:
best_tweet = current_tweet
best_score = sum(scores.category_scores) / len(scores.category_scores)
results["improvement_count"] += 1
# check for early stopping
if patience_counter >= patience_limit:
results["early_stopped"] = True
break
# stop at max iterations
if iteration_num >= max_iterations:
break
results.update({"final_tweet": best_tweet, "best_score": best_score})
self.reset()
return results
def reset(self):
self.current_tweet = ""
self.previous_evaluation = None

View File

@@ -2,57 +2,61 @@ from pydantic import BaseModel, Field, validator
from typing import List
from .constants import MIN_SCORE, MAX_SCORE
class CategoryEvaluation(BaseModel):
"""Pydantic model for a single category evaluation with reasoning."""
category: str = Field(description="The evaluation category name")
reasoning: str = Field(description="Explanation for the score")
score: int = Field(
description=f"Score for this category ({MIN_SCORE}-{MAX_SCORE})",
ge=MIN_SCORE,
le=MAX_SCORE
description=f"Score for this category ({MIN_SCORE}-{MAX_SCORE})",
ge=MIN_SCORE,
le=MAX_SCORE,
)
@validator('score')
@validator("score")
def validate_score(cls, score):
"""Ensure score is within the valid range."""
if not isinstance(score, int) or score < MIN_SCORE or score > MAX_SCORE:
raise ValueError(f"Score {score} must be an integer between {MIN_SCORE} and {MAX_SCORE}")
raise ValueError(
f"Score {score} must be an integer between {MIN_SCORE} and {MAX_SCORE}"
)
return score
class EvaluationResult(BaseModel):
"""Pydantic model for tweet evaluation results."""
evaluations: List[CategoryEvaluation] = Field(
description="List of category evaluations with reasoning and scores"
)
@validator('evaluations')
@validator("evaluations")
def validate_evaluations(cls, evals):
"""Ensure we have at least one evaluation."""
if not evals or len(evals) < 1:
raise ValueError("Must have at least one category evaluation")
return evals
@property
def category_scores(self) -> List[int]:
"""Get list of scores for backwards compatibility."""
return [eval.score for eval in self.evaluations]
def total_score(self) -> float:
"""Calculate the total score across all categories."""
return sum(eval.score for eval in self.evaluations)
def average_score(self) -> float:
"""Calculate the average score across all categories."""
return self.total_score() / len(self.evaluations)
def __gt__(self, other):
"""Compare evaluation results based on total score."""
if not isinstance(other, EvaluationResult):
return NotImplemented
return self.total_score() > other.total_score()
def __eq__(self, other):
"""Check equality based on total score."""
if not isinstance(other, EvaluationResult):

View File

@@ -1,7 +1,7 @@
import dspy
from typing import List, Optional
from models import EvaluationResult, CategoryEvaluation
from constants import (
from .models import EvaluationResult, CategoryEvaluation
from .constants import (
TWEET_MAX_LENGTH,
TWEET_TRUNCATION_SUFFIX,
DEFAULT_SCORE,
@@ -10,87 +10,115 @@ from constants import (
ERROR_GENERATION,
ERROR_EVALUATION,
MIN_SCORE,
MAX_SCORE
MAX_SCORE,
)
from helpers import format_evaluation_for_generator, truncate_tweet
from .helpers import format_evaluation_for_generator, truncate_tweet
class TweetGenerator(dspy.Signature):
"""Generate or improve a tweet based on input text and detailed evaluation feedback with reasoning."""
input_text: str = dspy.InputField(desc="Original text or current tweet to improve")
current_tweet: str = dspy.InputField(desc="Current best tweet version (empty for first generation)")
previous_evaluation: str = dspy.InputField(desc="Previous evaluation with category-by-category reasoning and scores (empty for first generation)")
improved_tweet: str = dspy.OutputField(desc=f"Generated or improved tweet text (max {TWEET_MAX_LENGTH} characters)")
current_tweet: str = dspy.InputField(
desc="Current best tweet version (empty for first generation)"
)
previous_evaluation: str = dspy.InputField(
desc="Previous evaluation with category-by-category reasoning and scores (empty for first generation)"
)
improved_tweet: str = dspy.OutputField(
desc=f"Generated or improved tweet text (max {TWEET_MAX_LENGTH} characters)"
)
class TweetEvaluator(dspy.Signature):
"""Evaluate a tweet across multiple custom categories. For each category, provide detailed reasoning explaining the score, then assign a score. Ensure the tweet maintains the same meaning as the original text."""
original_text: str = dspy.InputField(desc="Original input text that started the optimization")
current_best_tweet: str = dspy.InputField(desc="Current best tweet version for comparison (empty for first evaluation)")
original_text: str = dspy.InputField(
desc="Original input text that started the optimization"
)
current_best_tweet: str = dspy.InputField(
desc="Current best tweet version for comparison (empty for first evaluation)"
)
tweet_text: str = dspy.InputField(desc="Tweet text to evaluate")
categories: str = dspy.InputField(desc="Comma-separated list of evaluation category descriptions")
categories: str = dspy.InputField(
desc="Comma-separated list of evaluation category descriptions"
)
evaluations: List[CategoryEvaluation] = dspy.OutputField(
desc=f"List of evaluations with category name, detailed reasoning, and score ({MIN_SCORE}-{MAX_SCORE}) for each category. Ensure the tweet conveys the same meaning as the original text."
)
class TweetGeneratorModule(dspy.Module):
"""DSPy module for generating and improving tweets."""
def __init__(self):
super().__init__()
self.generate = dspy.ChainOfThought(TweetGenerator)
def forward(self, input_text: str, current_tweet: str = "", previous_evaluation: Optional[EvaluationResult] = None) -> str:
def forward(
self,
input_text: str,
current_tweet: str = "",
previous_evaluation: Optional[EvaluationResult] = None,
) -> str:
"""Generate or improve a tweet."""
try:
# Format previous evaluation as text
eval_text = format_evaluation_for_generator(previous_evaluation)
result = self.generate(
input_text=input_text,
current_tweet=current_tweet,
previous_evaluation=eval_text
previous_evaluation=eval_text,
)
# Ensure tweet doesn't exceed character limit
tweet = truncate_tweet(result.improved_tweet, TWEET_MAX_LENGTH, TWEET_TRUNCATION_SUFFIX)
tweet = truncate_tweet(
result.improved_tweet, TWEET_MAX_LENGTH, TWEET_TRUNCATION_SUFFIX
)
return tweet
except Exception as e:
raise Exception(f"{ERROR_GENERATION}: {str(e)}")
class TweetEvaluatorModule(dspy.Module):
"""DSPy module for evaluating tweets across custom categories."""
def __init__(self):
super().__init__()
self.evaluate = dspy.ChainOfThought(TweetEvaluator)
def forward(self, tweet_text: str, categories: List[str], original_text: str = "", current_best_tweet: str = "") -> EvaluationResult:
def forward(
self,
tweet_text: str,
categories: List[str],
original_text: str = "",
current_best_tweet: str = "",
) -> EvaluationResult:
"""Evaluate a tweet across specified categories."""
try:
# Join categories into comma-separated string
categories_str = ", ".join(categories)
result = self.evaluate(
original_text=original_text,
current_best_tweet=current_best_tweet,
tweet_text=tweet_text,
categories=categories_str
categories=categories_str,
)
# Extract and validate evaluations
evaluations = result.evaluations
# Ensure we have the right number of evaluations
if len(evaluations) != len(categories):
# Create default evaluations if mismatch
evaluations = [
CategoryEvaluation(
category=cat,
reasoning=ERROR_PARSING,
score=DEFAULT_SCORE
) for cat in categories
category=cat, reasoning=ERROR_PARSING, score=DEFAULT_SCORE
)
for cat in categories
]
else:
# Validate each evaluation
@@ -99,22 +127,32 @@ class TweetEvaluatorModule(dspy.Module):
try:
# Ensure score is valid
score = max(MIN_SCORE, min(MAX_SCORE, int(eval.score)))
validated_evals.append(CategoryEvaluation(
category=categories[i] if i < len(categories) else eval.category,
reasoning=eval.reasoning if eval.reasoning else "No reasoning provided",
score=score
))
validated_evals.append(
CategoryEvaluation(
category=categories[i]
if i < len(categories)
else eval.category,
reasoning=eval.reasoning
if eval.reasoning
else "No reasoning provided",
score=score,
)
)
except (ValueError, TypeError, AttributeError):
validated_evals.append(CategoryEvaluation(
category=categories[i] if i < len(categories) else "Unknown",
reasoning=ERROR_VALIDATION,
score=DEFAULT_SCORE
))
validated_evals.append(
CategoryEvaluation(
category=categories[i]
if i < len(categories)
else "Unknown",
reasoning=ERROR_VALIDATION,
score=DEFAULT_SCORE,
)
)
evaluations = validated_evals
# Create validated result
validated_result = EvaluationResult(evaluations=evaluations)
return validated_result
except Exception as e:
# Return default evaluations on error
@@ -122,7 +160,8 @@ class TweetEvaluatorModule(dspy.Module):
CategoryEvaluation(
category=cat,
reasoning=f"{ERROR_EVALUATION}: {str(e)}",
score=DEFAULT_SCORE
) for cat in categories
score=DEFAULT_SCORE,
)
for cat in categories
]
return EvaluationResult(evaluations=default_evals)

View File

@@ -23,22 +23,24 @@ from .constants import (
ERROR_SAVE_HISTORY,
ERROR_LOAD_HISTORY,
ERROR_DSPy_INIT,
TWEET_MAX_LENGTH
TWEET_MAX_LENGTH,
)
def save_categories(categories: List[str]) -> None:
"""Save categories to JSON file."""
try:
with open(CATEGORIES_FILE, 'w') as f:
with open(CATEGORIES_FILE, "w") as f:
json.dump(categories, f, indent=2)
except Exception as e:
print(f"{ERROR_SAVE_CATEGORIES}: {str(e)}")
def load_categories() -> List[str]:
"""Load categories from JSON file."""
try:
if os.path.exists(CATEGORIES_FILE):
with open(CATEGORIES_FILE, 'r') as f:
with open(CATEGORIES_FILE, "r") as f:
categories = json.load(f)
return categories if isinstance(categories, list) else []
else:
@@ -48,6 +50,7 @@ def load_categories() -> List[str]:
print(f"{ERROR_LOAD_CATEGORIES}: {str(e)}")
return []
def get_dspy_lm(model_name: str):
"""Get a DSPy LM instance for the specified model (cached per model)."""
try:
@@ -57,32 +60,32 @@ def get_dspy_lm(model_name: str):
max_tokens = 16000 if "openai/gpt-5" in model_name else OPENROUTER_MAX_TOKENS
temperature = 1.0 if "openai/gpt-5" in model_name else OPENROUTER_TEMPERATURE
lm = dspy.LM(
model=model_name,
api_key=openrouter_key,
api_base=OPENROUTER_API_BASE,
max_tokens=max_tokens,
temperature=temperature
temperature=temperature,
)
return lm
except Exception as e:
raise Exception(f"Failed to create LM: {str(e)}")
def initialize_dspy(model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_USE_CACHE) -> bool:
def initialize_dspy(
model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_USE_CACHE
) -> bool:
"""Initialize DSPy with OpenRouter and selected model."""
# Configure cache settings
try:
dspy.configure_cache(
enable_memory_cache=use_cache,
enable_disk_cache=use_cache
)
dspy.configure_cache(enable_memory_cache=use_cache, enable_disk_cache=use_cache)
except Exception:
# Cache configuration might fail in some environments, continue anyway
pass
# Only configure DSPy once globally
if not hasattr(dspy, '_replit_configured'):
if not hasattr(dspy, "_replit_configured"):
try:
# Get the LM for the default model
default_lm = get_dspy_lm(model_name)
@@ -90,37 +93,44 @@ def initialize_dspy(model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_U
dspy._replit_configured = True # type: ignore
except Exception as e:
raise Exception(f"{ERROR_DSPy_INIT}: {str(e)}")
return True
def format_tweet_for_display(tweet: str) -> str:
"""Format tweet text for better display."""
return tweet.strip()
def calculate_tweet_length(tweet: str) -> int:
"""Calculate tweet length."""
return len(tweet.strip())
def is_valid_tweet(tweet: str) -> bool:
"""Check if tweet is valid (not empty and within character limit)."""
cleaned_tweet = tweet.strip()
return bool(cleaned_tweet) and len(cleaned_tweet) <= TWEET_MAX_LENGTH
def save_settings(settings: Dict[str, Any]) -> None:
"""Save settings to JSON file."""
try:
with open(SETTINGS_FILE, 'w') as f:
with open(SETTINGS_FILE, "w") as f:
json.dump(settings, f, indent=2)
except Exception as e:
print(f"{ERROR_SAVE_SETTINGS}: {str(e)}")
def load_settings() -> Dict[str, Any]:
"""Load settings from JSON file."""
try:
if os.path.exists(SETTINGS_FILE):
with open(SETTINGS_FILE, 'r') as f:
with open(SETTINGS_FILE, "r") as f:
settings = json.load(f)
return settings if isinstance(settings, dict) else get_default_settings()
return (
settings if isinstance(settings, dict) else get_default_settings()
)
else:
# Return default settings if file doesn't exist
default_settings = get_default_settings()
@@ -130,28 +140,31 @@ def load_settings() -> Dict[str, Any]:
print(f"{ERROR_LOAD_SETTINGS}: {str(e)}")
return get_default_settings()
def get_default_settings() -> Dict[str, Any]:
"""Get default settings."""
return {
"selected_model": DEFAULT_MODEL,
"iterations": DEFAULT_ITERATIONS,
"patience": DEFAULT_PATIENCE,
"use_cache": DEFAULT_USE_CACHE
"use_cache": DEFAULT_USE_CACHE,
}
def save_input_history(history: List[str]) -> None:
"""Save input history to JSON file."""
try:
with open(HISTORY_FILE, 'w') as f:
with open(HISTORY_FILE, "w") as f:
json.dump(history, f, indent=2)
except Exception as e:
print(f"{ERROR_SAVE_HISTORY}: {str(e)}")
def load_input_history() -> List[str]:
"""Load input history from JSON file."""
try:
if os.path.exists(HISTORY_FILE):
with open(HISTORY_FILE, 'r') as f:
with open(HISTORY_FILE, "r") as f:
history = json.load(f)
return history if isinstance(history, list) else []
else:
@@ -160,33 +173,34 @@ def load_input_history() -> List[str]:
print(f"{ERROR_LOAD_HISTORY}: {str(e)}")
return []
def add_to_input_history(history: List[str], new_input: str) -> List[str]:
"""
Add a new input to history, maintaining max size and avoiding duplicates.
Args:
history: Current history list
new_input: New input text to add
Returns:
Updated history list with new input at the beginning
"""
# Strip whitespace from input
new_input = new_input.strip()
# Don't add empty strings
if not new_input:
return history
# Remove duplicate if it exists
if new_input in history:
history.remove(new_input)
# Add to beginning of list
updated_history = [new_input] + history
# Trim to max size
if len(updated_history) > MAX_HISTORY_ITEMS:
updated_history = updated_history[:MAX_HISTORY_ITEMS]
return updated_history