Complete Migration
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -27,7 +27,7 @@ AVAILABLE_MODELS: Dict[str, str] = {
|
||||
"Gemini 2.5 Flash": "openrouter/google/gemini-2.5-flash",
|
||||
"Gemini 2.5 Flash Lite": "openrouter/google/gemini-2.5-flash-lite",
|
||||
"Gemini 2.5 Pro": "openrouter/google/gemini-2.5-pro",
|
||||
"GPT-5": "openrouter/openai/gpt-5"
|
||||
"GPT-5": "openrouter/openai/gpt-5",
|
||||
}
|
||||
|
||||
# openrouter API configuration
|
||||
@@ -45,7 +45,7 @@ DEFAULT_CATEGORIES: List[str] = [
|
||||
"Engagement potential - how likely users are to like, retweet, or reply",
|
||||
"Clarity and readability - how easy the tweet is to understand",
|
||||
"Emotional impact - how well the tweet evokes feelings or reactions",
|
||||
"Relevance to target audience - how well it resonates with intended readers"
|
||||
"Relevance to target audience - how well it resonates with intended readers",
|
||||
]
|
||||
|
||||
# error messages
|
||||
|
||||
@@ -6,38 +6,37 @@ from .constants import MAX_SCORE
|
||||
def format_evaluation_for_generator(evaluation: Optional[EvaluationResult]) -> str:
|
||||
"""
|
||||
Format an evaluation result as text for the generator module.
|
||||
|
||||
|
||||
Args:
|
||||
evaluation: The evaluation result to format
|
||||
|
||||
|
||||
Returns:
|
||||
Formatted string with category-by-category reasoning and scores
|
||||
"""
|
||||
if not evaluation or not evaluation.evaluations:
|
||||
return ""
|
||||
|
||||
|
||||
eval_lines = []
|
||||
for eval in evaluation.evaluations:
|
||||
eval_lines.append(f"{eval.category} (Score: {eval.score}/{MAX_SCORE}): {eval.reasoning}")
|
||||
|
||||
eval_lines.append(
|
||||
f"{eval.category} (Score: {eval.score}/{MAX_SCORE}): {eval.reasoning}"
|
||||
)
|
||||
|
||||
return "\n".join(eval_lines)
|
||||
|
||||
|
||||
def build_settings_dict(
|
||||
selected_model: str,
|
||||
iterations: int,
|
||||
patience: int,
|
||||
use_cache: bool
|
||||
selected_model: str, iterations: int, patience: int, use_cache: bool
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Build a settings dictionary for saving.
|
||||
|
||||
|
||||
Args:
|
||||
selected_model: The selected model name
|
||||
iterations: Number of optimization iterations
|
||||
patience: Patience threshold for early stopping
|
||||
use_cache: Whether to use DSPy cache
|
||||
|
||||
|
||||
Returns:
|
||||
Dictionary containing all settings
|
||||
"""
|
||||
@@ -45,26 +44,26 @@ def build_settings_dict(
|
||||
"selected_model": selected_model,
|
||||
"iterations": iterations,
|
||||
"patience": patience,
|
||||
"use_cache": use_cache
|
||||
"use_cache": use_cache,
|
||||
}
|
||||
|
||||
|
||||
def truncate_tweet(tweet: str, max_length: int, suffix: str = "...") -> str:
|
||||
"""
|
||||
Truncate a tweet to the maximum length with a suffix.
|
||||
|
||||
|
||||
Args:
|
||||
tweet: The tweet text to truncate
|
||||
max_length: Maximum allowed length
|
||||
suffix: Suffix to add when truncating (default: "...")
|
||||
|
||||
|
||||
Returns:
|
||||
Truncated tweet text
|
||||
"""
|
||||
tweet = tweet.strip()
|
||||
if len(tweet) <= max_length:
|
||||
return tweet
|
||||
|
||||
|
||||
truncation_point = max_length - len(suffix)
|
||||
return tweet[:truncation_point] + suffix
|
||||
|
||||
@@ -72,11 +71,11 @@ def truncate_tweet(tweet: str, max_length: int, suffix: str = "...") -> str:
|
||||
def truncate_category_display(category: str, max_length: int = 30) -> str:
|
||||
"""
|
||||
Truncate a category name for display purposes.
|
||||
|
||||
|
||||
Args:
|
||||
category: The category name
|
||||
max_length: Maximum display length (default: 30)
|
||||
|
||||
|
||||
Returns:
|
||||
Truncated category name with "..." if needed
|
||||
"""
|
||||
|
||||
@@ -3,27 +3,32 @@ from .models import EvaluationResult
|
||||
from .modules import TweetGeneratorModule, TweetEvaluatorModule
|
||||
from .helpers import format_evaluation_for_generator
|
||||
|
||||
|
||||
class HillClimbingOptimizer:
|
||||
"""Hill climbing optimizer for tweet improvement."""
|
||||
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
generator: TweetGeneratorModule,
|
||||
evaluator: TweetEvaluatorModule,
|
||||
categories: List[str],
|
||||
max_iterations: int = 10,
|
||||
patience: int = 5
|
||||
patience: int = 5,
|
||||
):
|
||||
self.generator = generator
|
||||
self.evaluator = evaluator
|
||||
self.categories = categories
|
||||
self.max_iterations = max_iterations
|
||||
self.patience = patience
|
||||
|
||||
def optimize(self, initial_text: str) -> Iterator[Tuple[str, EvaluationResult, bool, int, Dict[str, str], Dict[str, str]]]:
|
||||
|
||||
def optimize(
|
||||
self, initial_text: str
|
||||
) -> Iterator[
|
||||
Tuple[str, EvaluationResult, bool, int, Dict[str, str], Dict[str, str]]
|
||||
]:
|
||||
"""
|
||||
Optimize tweet using hill climbing algorithm.
|
||||
|
||||
|
||||
Yields:
|
||||
Tuple of (current_tweet, evaluation_result, is_improvement, patience_counter, generator_inputs, evaluator_inputs)
|
||||
"""
|
||||
@@ -31,89 +36,114 @@ class HillClimbingOptimizer:
|
||||
generator_inputs = {
|
||||
"input_text": initial_text,
|
||||
"current_tweet": "",
|
||||
"previous_evaluation": ""
|
||||
"previous_evaluation": "",
|
||||
}
|
||||
current_tweet = self.generator(
|
||||
input_text=initial_text,
|
||||
current_tweet="",
|
||||
previous_evaluation=None
|
||||
input_text=initial_text, current_tweet="", previous_evaluation=None
|
||||
)
|
||||
|
||||
|
||||
evaluator_inputs = {
|
||||
"original_text": initial_text,
|
||||
"current_best_tweet": "",
|
||||
"tweet_text": current_tweet
|
||||
"tweet_text": current_tweet,
|
||||
}
|
||||
current_score = self.evaluator(
|
||||
tweet_text=current_tweet,
|
||||
categories=self.categories,
|
||||
original_text=initial_text,
|
||||
current_best_tweet=""
|
||||
current_best_tweet="",
|
||||
)
|
||||
|
||||
|
||||
best_tweet = current_tweet
|
||||
best_score = current_score
|
||||
patience_counter = 0
|
||||
|
||||
yield (current_tweet, current_score, True, patience_counter, generator_inputs, evaluator_inputs)
|
||||
|
||||
|
||||
yield (
|
||||
current_tweet,
|
||||
current_score,
|
||||
True,
|
||||
patience_counter,
|
||||
generator_inputs,
|
||||
evaluator_inputs,
|
||||
)
|
||||
|
||||
for iteration in range(1, self.max_iterations):
|
||||
# Generate improved tweet with previous evaluation as feedback
|
||||
try:
|
||||
# Format evaluation for display in generator inputs
|
||||
eval_text = format_evaluation_for_generator(best_score)
|
||||
|
||||
|
||||
generator_inputs = {
|
||||
"input_text": initial_text,
|
||||
"current_tweet": best_tweet,
|
||||
"previous_evaluation": eval_text
|
||||
"previous_evaluation": eval_text,
|
||||
}
|
||||
|
||||
|
||||
candidate_tweet = self.generator(
|
||||
input_text=initial_text,
|
||||
current_tweet=best_tweet,
|
||||
previous_evaluation=best_score
|
||||
previous_evaluation=best_score,
|
||||
)
|
||||
|
||||
|
||||
# Evaluate candidate
|
||||
evaluator_inputs = {
|
||||
"original_text": initial_text,
|
||||
"current_best_tweet": best_tweet,
|
||||
"tweet_text": candidate_tweet
|
||||
"tweet_text": candidate_tweet,
|
||||
}
|
||||
candidate_score = self.evaluator(
|
||||
tweet_text=candidate_tweet,
|
||||
categories=self.categories,
|
||||
original_text=initial_text,
|
||||
current_best_tweet=best_tweet
|
||||
current_best_tweet=best_tweet,
|
||||
)
|
||||
|
||||
|
||||
# Check if candidate is better (hill climbing condition)
|
||||
is_improvement = candidate_score > best_score
|
||||
|
||||
|
||||
if is_improvement:
|
||||
best_tweet = candidate_tweet
|
||||
best_score = candidate_score
|
||||
patience_counter = 0
|
||||
yield (candidate_tweet, candidate_score, True, patience_counter, generator_inputs, evaluator_inputs)
|
||||
yield (
|
||||
candidate_tweet,
|
||||
candidate_score,
|
||||
True,
|
||||
patience_counter,
|
||||
generator_inputs,
|
||||
evaluator_inputs,
|
||||
)
|
||||
else:
|
||||
patience_counter += 1
|
||||
yield (best_tweet, candidate_score, False, patience_counter, generator_inputs, evaluator_inputs)
|
||||
|
||||
yield (
|
||||
best_tweet,
|
||||
candidate_score,
|
||||
False,
|
||||
patience_counter,
|
||||
generator_inputs,
|
||||
evaluator_inputs,
|
||||
)
|
||||
|
||||
# Early stopping if no improvement for 'patience' iterations
|
||||
if patience_counter >= self.patience:
|
||||
break
|
||||
|
||||
|
||||
except Exception as e:
|
||||
# If generation fails, yield current best
|
||||
patience_counter += 1
|
||||
evaluator_inputs = {
|
||||
"original_text": initial_text,
|
||||
"current_best_tweet": best_tweet,
|
||||
"tweet_text": best_tweet
|
||||
"tweet_text": best_tweet,
|
||||
}
|
||||
yield (best_tweet, best_score, False, patience_counter, generator_inputs, evaluator_inputs)
|
||||
|
||||
yield (
|
||||
best_tweet,
|
||||
best_score,
|
||||
False,
|
||||
patience_counter,
|
||||
generator_inputs,
|
||||
evaluator_inputs,
|
||||
)
|
||||
|
||||
if patience_counter >= self.patience:
|
||||
break
|
||||
|
||||
|
||||
105
agent/index.py
Normal file
105
agent/index.py
Normal file
@@ -0,0 +1,105 @@
|
||||
from modaic import PrecompiledAgent, PrecompiledConfig
|
||||
from .modules import TweetGeneratorModule, TweetEvaluatorModule
|
||||
from .models import EvaluationResult
|
||||
from .hill_climbing import HillClimbingOptimizer
|
||||
from typing import Optional, List
|
||||
from .utils import get_dspy_lm
|
||||
from .constants import DEFAULT_CATEGORIES, DEFAULT_ITERATIONS, DEFAULT_PATIENCE
|
||||
|
||||
|
||||
class TweetOptimizerConfig(PrecompiledConfig):
|
||||
lm: str = "openrouter/google/gemini-2.5-flash"
|
||||
eval_lm: str = "openrouter/openai/gpt-5"
|
||||
categories: List[str] = DEFAULT_CATEGORIES
|
||||
max_iterations: int = DEFAULT_ITERATIONS
|
||||
patience: int = DEFAULT_PATIENCE
|
||||
|
||||
|
||||
class TweetOptimizerAgent(PrecompiledAgent):
|
||||
config: TweetOptimizerConfig
|
||||
|
||||
current_tweet: str = ""
|
||||
previous_evaluation: Optional[EvaluationResult] = None
|
||||
|
||||
def __init__(self, config: TweetOptimizerConfig, **kwargs):
|
||||
super().__init__(config, **kwargs)
|
||||
self.tweet_generator = TweetGeneratorModule()
|
||||
self.tweet_evaluator = TweetEvaluatorModule()
|
||||
|
||||
# set up optimizer
|
||||
self.optimizer = HillClimbingOptimizer(
|
||||
generator=self.tweet_generator,
|
||||
evaluator=self.tweet_evaluator,
|
||||
categories=config.categories,
|
||||
max_iterations=config.max_iterations,
|
||||
patience=config.patience,
|
||||
)
|
||||
|
||||
self.lm = config.lm
|
||||
self.eval_lm = config.eval_lm
|
||||
self.categories = config.categories
|
||||
self.max_iterations = config.max_iterations
|
||||
self.patience = config.patience
|
||||
|
||||
# initialize DSPy with the specified model
|
||||
self.tweet_generator.set_lm(get_dspy_lm(config.lm))
|
||||
self.tweet_evaluator.set_lm(get_dspy_lm(config.eval_lm))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_text: str,
|
||||
iterations: Optional[int] = None,
|
||||
patience: Optional[int] = None,
|
||||
) -> str:
|
||||
"""Run full optimization process."""
|
||||
max_iterations = iterations or self.max_iterations
|
||||
patience_limit = patience or self.patience
|
||||
|
||||
results = {
|
||||
"initial_text": input_text,
|
||||
"final_tweet": "",
|
||||
"best_score": 0.0,
|
||||
"iterations_run": 0,
|
||||
"early_stopped": False,
|
||||
"scores_history": [],
|
||||
"improvement_count": 0,
|
||||
}
|
||||
|
||||
best_tweet = ""
|
||||
best_score = 0.0
|
||||
|
||||
for iteration, (
|
||||
current_tweet,
|
||||
scores,
|
||||
is_improvement,
|
||||
patience_counter,
|
||||
_,
|
||||
_,
|
||||
) in enumerate(self.optimizer.optimize(input_text)):
|
||||
iteration_num = iteration + 1
|
||||
results["iterations_run"] = iteration_num
|
||||
results["scores_history"].append(scores)
|
||||
|
||||
if is_improvement:
|
||||
best_tweet = current_tweet
|
||||
best_score = sum(scores.category_scores) / len(scores.category_scores)
|
||||
results["improvement_count"] += 1
|
||||
|
||||
# check for early stopping
|
||||
if patience_counter >= patience_limit:
|
||||
results["early_stopped"] = True
|
||||
break
|
||||
|
||||
# stop at max iterations
|
||||
if iteration_num >= max_iterations:
|
||||
break
|
||||
|
||||
results.update({"final_tweet": best_tweet, "best_score": best_score})
|
||||
|
||||
self.reset()
|
||||
|
||||
return results
|
||||
|
||||
def reset(self):
|
||||
self.current_tweet = ""
|
||||
self.previous_evaluation = None
|
||||
@@ -2,57 +2,61 @@ from pydantic import BaseModel, Field, validator
|
||||
from typing import List
|
||||
from .constants import MIN_SCORE, MAX_SCORE
|
||||
|
||||
|
||||
class CategoryEvaluation(BaseModel):
|
||||
"""Pydantic model for a single category evaluation with reasoning."""
|
||||
|
||||
|
||||
category: str = Field(description="The evaluation category name")
|
||||
reasoning: str = Field(description="Explanation for the score")
|
||||
score: int = Field(
|
||||
description=f"Score for this category ({MIN_SCORE}-{MAX_SCORE})",
|
||||
ge=MIN_SCORE,
|
||||
le=MAX_SCORE
|
||||
description=f"Score for this category ({MIN_SCORE}-{MAX_SCORE})",
|
||||
ge=MIN_SCORE,
|
||||
le=MAX_SCORE,
|
||||
)
|
||||
|
||||
@validator('score')
|
||||
|
||||
@validator("score")
|
||||
def validate_score(cls, score):
|
||||
"""Ensure score is within the valid range."""
|
||||
if not isinstance(score, int) or score < MIN_SCORE or score > MAX_SCORE:
|
||||
raise ValueError(f"Score {score} must be an integer between {MIN_SCORE} and {MAX_SCORE}")
|
||||
raise ValueError(
|
||||
f"Score {score} must be an integer between {MIN_SCORE} and {MAX_SCORE}"
|
||||
)
|
||||
return score
|
||||
|
||||
|
||||
class EvaluationResult(BaseModel):
|
||||
"""Pydantic model for tweet evaluation results."""
|
||||
|
||||
|
||||
evaluations: List[CategoryEvaluation] = Field(
|
||||
description="List of category evaluations with reasoning and scores"
|
||||
)
|
||||
|
||||
@validator('evaluations')
|
||||
|
||||
@validator("evaluations")
|
||||
def validate_evaluations(cls, evals):
|
||||
"""Ensure we have at least one evaluation."""
|
||||
if not evals or len(evals) < 1:
|
||||
raise ValueError("Must have at least one category evaluation")
|
||||
return evals
|
||||
|
||||
|
||||
@property
|
||||
def category_scores(self) -> List[int]:
|
||||
"""Get list of scores for backwards compatibility."""
|
||||
return [eval.score for eval in self.evaluations]
|
||||
|
||||
|
||||
def total_score(self) -> float:
|
||||
"""Calculate the total score across all categories."""
|
||||
return sum(eval.score for eval in self.evaluations)
|
||||
|
||||
|
||||
def average_score(self) -> float:
|
||||
"""Calculate the average score across all categories."""
|
||||
return self.total_score() / len(self.evaluations)
|
||||
|
||||
|
||||
def __gt__(self, other):
|
||||
"""Compare evaluation results based on total score."""
|
||||
if not isinstance(other, EvaluationResult):
|
||||
return NotImplemented
|
||||
return self.total_score() > other.total_score()
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
"""Check equality based on total score."""
|
||||
if not isinstance(other, EvaluationResult):
|
||||
|
||||
129
agent/modules.py
129
agent/modules.py
@@ -1,7 +1,7 @@
|
||||
import dspy
|
||||
from typing import List, Optional
|
||||
from models import EvaluationResult, CategoryEvaluation
|
||||
from constants import (
|
||||
from .models import EvaluationResult, CategoryEvaluation
|
||||
from .constants import (
|
||||
TWEET_MAX_LENGTH,
|
||||
TWEET_TRUNCATION_SUFFIX,
|
||||
DEFAULT_SCORE,
|
||||
@@ -10,87 +10,115 @@ from constants import (
|
||||
ERROR_GENERATION,
|
||||
ERROR_EVALUATION,
|
||||
MIN_SCORE,
|
||||
MAX_SCORE
|
||||
MAX_SCORE,
|
||||
)
|
||||
from helpers import format_evaluation_for_generator, truncate_tweet
|
||||
from .helpers import format_evaluation_for_generator, truncate_tweet
|
||||
|
||||
|
||||
class TweetGenerator(dspy.Signature):
|
||||
"""Generate or improve a tweet based on input text and detailed evaluation feedback with reasoning."""
|
||||
|
||||
|
||||
input_text: str = dspy.InputField(desc="Original text or current tweet to improve")
|
||||
current_tweet: str = dspy.InputField(desc="Current best tweet version (empty for first generation)")
|
||||
previous_evaluation: str = dspy.InputField(desc="Previous evaluation with category-by-category reasoning and scores (empty for first generation)")
|
||||
improved_tweet: str = dspy.OutputField(desc=f"Generated or improved tweet text (max {TWEET_MAX_LENGTH} characters)")
|
||||
current_tweet: str = dspy.InputField(
|
||||
desc="Current best tweet version (empty for first generation)"
|
||||
)
|
||||
previous_evaluation: str = dspy.InputField(
|
||||
desc="Previous evaluation with category-by-category reasoning and scores (empty for first generation)"
|
||||
)
|
||||
improved_tweet: str = dspy.OutputField(
|
||||
desc=f"Generated or improved tweet text (max {TWEET_MAX_LENGTH} characters)"
|
||||
)
|
||||
|
||||
|
||||
class TweetEvaluator(dspy.Signature):
|
||||
"""Evaluate a tweet across multiple custom categories. For each category, provide detailed reasoning explaining the score, then assign a score. Ensure the tweet maintains the same meaning as the original text."""
|
||||
|
||||
original_text: str = dspy.InputField(desc="Original input text that started the optimization")
|
||||
current_best_tweet: str = dspy.InputField(desc="Current best tweet version for comparison (empty for first evaluation)")
|
||||
|
||||
original_text: str = dspy.InputField(
|
||||
desc="Original input text that started the optimization"
|
||||
)
|
||||
current_best_tweet: str = dspy.InputField(
|
||||
desc="Current best tweet version for comparison (empty for first evaluation)"
|
||||
)
|
||||
tweet_text: str = dspy.InputField(desc="Tweet text to evaluate")
|
||||
categories: str = dspy.InputField(desc="Comma-separated list of evaluation category descriptions")
|
||||
categories: str = dspy.InputField(
|
||||
desc="Comma-separated list of evaluation category descriptions"
|
||||
)
|
||||
evaluations: List[CategoryEvaluation] = dspy.OutputField(
|
||||
desc=f"List of evaluations with category name, detailed reasoning, and score ({MIN_SCORE}-{MAX_SCORE}) for each category. Ensure the tweet conveys the same meaning as the original text."
|
||||
)
|
||||
|
||||
|
||||
class TweetGeneratorModule(dspy.Module):
|
||||
"""DSPy module for generating and improving tweets."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.generate = dspy.ChainOfThought(TweetGenerator)
|
||||
|
||||
def forward(self, input_text: str, current_tweet: str = "", previous_evaluation: Optional[EvaluationResult] = None) -> str:
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_text: str,
|
||||
current_tweet: str = "",
|
||||
previous_evaluation: Optional[EvaluationResult] = None,
|
||||
) -> str:
|
||||
"""Generate or improve a tweet."""
|
||||
try:
|
||||
# Format previous evaluation as text
|
||||
eval_text = format_evaluation_for_generator(previous_evaluation)
|
||||
|
||||
|
||||
result = self.generate(
|
||||
input_text=input_text,
|
||||
current_tweet=current_tweet,
|
||||
previous_evaluation=eval_text
|
||||
previous_evaluation=eval_text,
|
||||
)
|
||||
|
||||
|
||||
# Ensure tweet doesn't exceed character limit
|
||||
tweet = truncate_tweet(result.improved_tweet, TWEET_MAX_LENGTH, TWEET_TRUNCATION_SUFFIX)
|
||||
|
||||
tweet = truncate_tweet(
|
||||
result.improved_tweet, TWEET_MAX_LENGTH, TWEET_TRUNCATION_SUFFIX
|
||||
)
|
||||
|
||||
return tweet
|
||||
except Exception as e:
|
||||
raise Exception(f"{ERROR_GENERATION}: {str(e)}")
|
||||
|
||||
|
||||
class TweetEvaluatorModule(dspy.Module):
|
||||
"""DSPy module for evaluating tweets across custom categories."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.evaluate = dspy.ChainOfThought(TweetEvaluator)
|
||||
|
||||
def forward(self, tweet_text: str, categories: List[str], original_text: str = "", current_best_tweet: str = "") -> EvaluationResult:
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tweet_text: str,
|
||||
categories: List[str],
|
||||
original_text: str = "",
|
||||
current_best_tweet: str = "",
|
||||
) -> EvaluationResult:
|
||||
"""Evaluate a tweet across specified categories."""
|
||||
try:
|
||||
# Join categories into comma-separated string
|
||||
categories_str = ", ".join(categories)
|
||||
|
||||
|
||||
result = self.evaluate(
|
||||
original_text=original_text,
|
||||
current_best_tweet=current_best_tweet,
|
||||
tweet_text=tweet_text,
|
||||
categories=categories_str
|
||||
categories=categories_str,
|
||||
)
|
||||
|
||||
|
||||
# Extract and validate evaluations
|
||||
evaluations = result.evaluations
|
||||
|
||||
|
||||
# Ensure we have the right number of evaluations
|
||||
if len(evaluations) != len(categories):
|
||||
# Create default evaluations if mismatch
|
||||
evaluations = [
|
||||
CategoryEvaluation(
|
||||
category=cat,
|
||||
reasoning=ERROR_PARSING,
|
||||
score=DEFAULT_SCORE
|
||||
) for cat in categories
|
||||
category=cat, reasoning=ERROR_PARSING, score=DEFAULT_SCORE
|
||||
)
|
||||
for cat in categories
|
||||
]
|
||||
else:
|
||||
# Validate each evaluation
|
||||
@@ -99,22 +127,32 @@ class TweetEvaluatorModule(dspy.Module):
|
||||
try:
|
||||
# Ensure score is valid
|
||||
score = max(MIN_SCORE, min(MAX_SCORE, int(eval.score)))
|
||||
validated_evals.append(CategoryEvaluation(
|
||||
category=categories[i] if i < len(categories) else eval.category,
|
||||
reasoning=eval.reasoning if eval.reasoning else "No reasoning provided",
|
||||
score=score
|
||||
))
|
||||
validated_evals.append(
|
||||
CategoryEvaluation(
|
||||
category=categories[i]
|
||||
if i < len(categories)
|
||||
else eval.category,
|
||||
reasoning=eval.reasoning
|
||||
if eval.reasoning
|
||||
else "No reasoning provided",
|
||||
score=score,
|
||||
)
|
||||
)
|
||||
except (ValueError, TypeError, AttributeError):
|
||||
validated_evals.append(CategoryEvaluation(
|
||||
category=categories[i] if i < len(categories) else "Unknown",
|
||||
reasoning=ERROR_VALIDATION,
|
||||
score=DEFAULT_SCORE
|
||||
))
|
||||
validated_evals.append(
|
||||
CategoryEvaluation(
|
||||
category=categories[i]
|
||||
if i < len(categories)
|
||||
else "Unknown",
|
||||
reasoning=ERROR_VALIDATION,
|
||||
score=DEFAULT_SCORE,
|
||||
)
|
||||
)
|
||||
evaluations = validated_evals
|
||||
|
||||
|
||||
# Create validated result
|
||||
validated_result = EvaluationResult(evaluations=evaluations)
|
||||
|
||||
|
||||
return validated_result
|
||||
except Exception as e:
|
||||
# Return default evaluations on error
|
||||
@@ -122,7 +160,8 @@ class TweetEvaluatorModule(dspy.Module):
|
||||
CategoryEvaluation(
|
||||
category=cat,
|
||||
reasoning=f"{ERROR_EVALUATION}: {str(e)}",
|
||||
score=DEFAULT_SCORE
|
||||
) for cat in categories
|
||||
score=DEFAULT_SCORE,
|
||||
)
|
||||
for cat in categories
|
||||
]
|
||||
return EvaluationResult(evaluations=default_evals)
|
||||
|
||||
@@ -23,22 +23,24 @@ from .constants import (
|
||||
ERROR_SAVE_HISTORY,
|
||||
ERROR_LOAD_HISTORY,
|
||||
ERROR_DSPy_INIT,
|
||||
TWEET_MAX_LENGTH
|
||||
TWEET_MAX_LENGTH,
|
||||
)
|
||||
|
||||
|
||||
def save_categories(categories: List[str]) -> None:
|
||||
"""Save categories to JSON file."""
|
||||
try:
|
||||
with open(CATEGORIES_FILE, 'w') as f:
|
||||
with open(CATEGORIES_FILE, "w") as f:
|
||||
json.dump(categories, f, indent=2)
|
||||
except Exception as e:
|
||||
print(f"{ERROR_SAVE_CATEGORIES}: {str(e)}")
|
||||
|
||||
|
||||
def load_categories() -> List[str]:
|
||||
"""Load categories from JSON file."""
|
||||
try:
|
||||
if os.path.exists(CATEGORIES_FILE):
|
||||
with open(CATEGORIES_FILE, 'r') as f:
|
||||
with open(CATEGORIES_FILE, "r") as f:
|
||||
categories = json.load(f)
|
||||
return categories if isinstance(categories, list) else []
|
||||
else:
|
||||
@@ -48,6 +50,7 @@ def load_categories() -> List[str]:
|
||||
print(f"{ERROR_LOAD_CATEGORIES}: {str(e)}")
|
||||
return []
|
||||
|
||||
|
||||
def get_dspy_lm(model_name: str):
|
||||
"""Get a DSPy LM instance for the specified model (cached per model)."""
|
||||
try:
|
||||
@@ -57,32 +60,32 @@ def get_dspy_lm(model_name: str):
|
||||
|
||||
max_tokens = 16000 if "openai/gpt-5" in model_name else OPENROUTER_MAX_TOKENS
|
||||
temperature = 1.0 if "openai/gpt-5" in model_name else OPENROUTER_TEMPERATURE
|
||||
|
||||
|
||||
lm = dspy.LM(
|
||||
model=model_name,
|
||||
api_key=openrouter_key,
|
||||
api_base=OPENROUTER_API_BASE,
|
||||
max_tokens=max_tokens,
|
||||
temperature=temperature
|
||||
temperature=temperature,
|
||||
)
|
||||
return lm
|
||||
except Exception as e:
|
||||
raise Exception(f"Failed to create LM: {str(e)}")
|
||||
|
||||
def initialize_dspy(model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_USE_CACHE) -> bool:
|
||||
|
||||
def initialize_dspy(
|
||||
model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_USE_CACHE
|
||||
) -> bool:
|
||||
"""Initialize DSPy with OpenRouter and selected model."""
|
||||
# Configure cache settings
|
||||
try:
|
||||
dspy.configure_cache(
|
||||
enable_memory_cache=use_cache,
|
||||
enable_disk_cache=use_cache
|
||||
)
|
||||
dspy.configure_cache(enable_memory_cache=use_cache, enable_disk_cache=use_cache)
|
||||
except Exception:
|
||||
# Cache configuration might fail in some environments, continue anyway
|
||||
pass
|
||||
|
||||
|
||||
# Only configure DSPy once globally
|
||||
if not hasattr(dspy, '_replit_configured'):
|
||||
if not hasattr(dspy, "_replit_configured"):
|
||||
try:
|
||||
# Get the LM for the default model
|
||||
default_lm = get_dspy_lm(model_name)
|
||||
@@ -90,37 +93,44 @@ def initialize_dspy(model_name: str = DEFAULT_MODEL, use_cache: bool = DEFAULT_U
|
||||
dspy._replit_configured = True # type: ignore
|
||||
except Exception as e:
|
||||
raise Exception(f"{ERROR_DSPy_INIT}: {str(e)}")
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def format_tweet_for_display(tweet: str) -> str:
|
||||
"""Format tweet text for better display."""
|
||||
return tweet.strip()
|
||||
|
||||
|
||||
def calculate_tweet_length(tweet: str) -> int:
|
||||
"""Calculate tweet length."""
|
||||
return len(tweet.strip())
|
||||
|
||||
|
||||
def is_valid_tweet(tweet: str) -> bool:
|
||||
"""Check if tweet is valid (not empty and within character limit)."""
|
||||
cleaned_tweet = tweet.strip()
|
||||
return bool(cleaned_tweet) and len(cleaned_tweet) <= TWEET_MAX_LENGTH
|
||||
|
||||
|
||||
def save_settings(settings: Dict[str, Any]) -> None:
|
||||
"""Save settings to JSON file."""
|
||||
try:
|
||||
with open(SETTINGS_FILE, 'w') as f:
|
||||
with open(SETTINGS_FILE, "w") as f:
|
||||
json.dump(settings, f, indent=2)
|
||||
except Exception as e:
|
||||
print(f"{ERROR_SAVE_SETTINGS}: {str(e)}")
|
||||
|
||||
|
||||
def load_settings() -> Dict[str, Any]:
|
||||
"""Load settings from JSON file."""
|
||||
try:
|
||||
if os.path.exists(SETTINGS_FILE):
|
||||
with open(SETTINGS_FILE, 'r') as f:
|
||||
with open(SETTINGS_FILE, "r") as f:
|
||||
settings = json.load(f)
|
||||
return settings if isinstance(settings, dict) else get_default_settings()
|
||||
return (
|
||||
settings if isinstance(settings, dict) else get_default_settings()
|
||||
)
|
||||
else:
|
||||
# Return default settings if file doesn't exist
|
||||
default_settings = get_default_settings()
|
||||
@@ -130,28 +140,31 @@ def load_settings() -> Dict[str, Any]:
|
||||
print(f"{ERROR_LOAD_SETTINGS}: {str(e)}")
|
||||
return get_default_settings()
|
||||
|
||||
|
||||
def get_default_settings() -> Dict[str, Any]:
|
||||
"""Get default settings."""
|
||||
return {
|
||||
"selected_model": DEFAULT_MODEL,
|
||||
"iterations": DEFAULT_ITERATIONS,
|
||||
"patience": DEFAULT_PATIENCE,
|
||||
"use_cache": DEFAULT_USE_CACHE
|
||||
"use_cache": DEFAULT_USE_CACHE,
|
||||
}
|
||||
|
||||
|
||||
def save_input_history(history: List[str]) -> None:
|
||||
"""Save input history to JSON file."""
|
||||
try:
|
||||
with open(HISTORY_FILE, 'w') as f:
|
||||
with open(HISTORY_FILE, "w") as f:
|
||||
json.dump(history, f, indent=2)
|
||||
except Exception as e:
|
||||
print(f"{ERROR_SAVE_HISTORY}: {str(e)}")
|
||||
|
||||
|
||||
def load_input_history() -> List[str]:
|
||||
"""Load input history from JSON file."""
|
||||
try:
|
||||
if os.path.exists(HISTORY_FILE):
|
||||
with open(HISTORY_FILE, 'r') as f:
|
||||
with open(HISTORY_FILE, "r") as f:
|
||||
history = json.load(f)
|
||||
return history if isinstance(history, list) else []
|
||||
else:
|
||||
@@ -160,33 +173,34 @@ def load_input_history() -> List[str]:
|
||||
print(f"{ERROR_LOAD_HISTORY}: {str(e)}")
|
||||
return []
|
||||
|
||||
|
||||
def add_to_input_history(history: List[str], new_input: str) -> List[str]:
|
||||
"""
|
||||
Add a new input to history, maintaining max size and avoiding duplicates.
|
||||
|
||||
|
||||
Args:
|
||||
history: Current history list
|
||||
new_input: New input text to add
|
||||
|
||||
|
||||
Returns:
|
||||
Updated history list with new input at the beginning
|
||||
"""
|
||||
# Strip whitespace from input
|
||||
new_input = new_input.strip()
|
||||
|
||||
|
||||
# Don't add empty strings
|
||||
if not new_input:
|
||||
return history
|
||||
|
||||
|
||||
# Remove duplicate if it exists
|
||||
if new_input in history:
|
||||
history.remove(new_input)
|
||||
|
||||
|
||||
# Add to beginning of list
|
||||
updated_history = [new_input] + history
|
||||
|
||||
|
||||
# Trim to max size
|
||||
if len(updated_history) > MAX_HISTORY_ITEMS:
|
||||
updated_history = updated_history[:MAX_HISTORY_ITEMS]
|
||||
|
||||
|
||||
return updated_history
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
{
|
||||
"AutoConfig": "agent.agent.TweetOptimizerConfig",
|
||||
"AutoAgent": "agent.agent.TweetOptimizerAgent"
|
||||
"AutoConfig": "agent.index.TweetOptimizerConfig",
|
||||
"AutoAgent": "agent.index.TweetOptimizerAgent"
|
||||
}
|
||||
16
main.py
16
main.py
@@ -1,4 +1,5 @@
|
||||
from agent.agent import TweetOptimizerAgent, TweetOptimizerConfig
|
||||
from agent.index import TweetOptimizerAgent, TweetOptimizerConfig
|
||||
|
||||
|
||||
def main():
|
||||
# create agent with default config
|
||||
@@ -16,7 +17,7 @@ def main():
|
||||
results = tweet_optimizer(
|
||||
input_text="Anthropic added a new OSS model on HuggingFace.",
|
||||
iterations=10, # Reduced for testing
|
||||
patience=8
|
||||
patience=8,
|
||||
)
|
||||
print(f"Initial text: {results['initial_text']}")
|
||||
print(f"Final tweet: {results['final_tweet']}")
|
||||
@@ -31,19 +32,20 @@ def main():
|
||||
print("\n=== Push to Hub ===")
|
||||
try:
|
||||
tweet_optimizer.push_to_hub(
|
||||
"farouk1/tweet-optimizer-v2",
|
||||
commit_message="Complete Migration",
|
||||
with_code=True
|
||||
)
|
||||
"farouk1/tweet-optimizer-v2",
|
||||
commit_message="Complete Migration",
|
||||
with_code=True,
|
||||
)
|
||||
print("Successfully pushed to hub!")
|
||||
except Exception as e:
|
||||
print(f"Error pushing to hub: {e}")
|
||||
|
||||
|
||||
print("\n=== Agent Configuration ===")
|
||||
print(f"Model: {config.lm}")
|
||||
print(f"Categories: {config.categories}")
|
||||
print(f"Max iterations: {config.max_iterations}")
|
||||
print(f"Patience: {config.patience}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user