366 lines
10 KiB
Markdown
366 lines
10 KiB
Markdown
# Prompt To Signature
|
|
|
|
Transform your ideas and prompts into executable DSPy signatures using AI! This agent automatically converts natural language descriptions into properly typed, production-ready DSPy signatures with support for complex nested structures, Pydantic models, and more.
|
|
|
|
## Features
|
|
|
|
- **Natural Language to DSPy Signature**: Convert ideas like "Translate English to German" or "Analyze sentiment from product reviews" into full `dspy.Signature` classes
|
|
- **Smart Type Inference**: Automatically determines appropriate field types (str, int, list, dict, Pydantic models, Literal types, etc.)
|
|
- **Dynamic Class Factory**: Generate and use `dspy.Signature` classes at runtime
|
|
- **Interactive Refinement**: Iteratively improve generated signatures by providing feedback in a loop
|
|
- **Complex Nested Structures**: Full support for Pydantic models with nested fields for structured outputs
|
|
- **Code Generation**: Export signatures as clean, executable Python code
|
|
|
|
## Quick Start with Modaic AutoAgent
|
|
|
|
The easiest way to use this agent is by loading it from Modaic Hub:
|
|
|
|
```python
|
|
from modaic import AutoAgent
|
|
|
|
# Load the precompiled agent from hub
|
|
agent = AutoAgent.from_precompiled("fadeleke/prompt-to-signature")
|
|
|
|
# Use the agent
|
|
prompt = "Translate text from English to French"
|
|
result = agent(prompt)
|
|
|
|
# Generate executable code
|
|
code = agent.generate_code(result)
|
|
print(code)
|
|
```
|
|
|
|
### With Custom Configuration
|
|
|
|
Override default configuration parameters:
|
|
|
|
```python
|
|
from modaic import AutoAgent
|
|
|
|
agent = AutoAgent.from_precompiled(
|
|
"fadeleke/prompt-to-signature",
|
|
config={
|
|
"lm": "openrouter/anthropic/claude-sonnet-4.5",
|
|
"max_tokens": 32000,
|
|
"temperature": 0.7,
|
|
}
|
|
)
|
|
|
|
result = agent("Summarize a document and extract key entities")
|
|
```
|
|
|
|
## Manual Installation & Setup
|
|
|
|
If you prefer to run the agent locally:
|
|
|
|
### Prerequisites
|
|
|
|
- Python 3.11+
|
|
- [uv](https://docs.astral.sh/uv/) package manager
|
|
|
|
### Installation
|
|
|
|
1. Clone the repository:
|
|
```bash
|
|
# Clone via HTTPS
|
|
git clone https://git.modaic.dev/fadeleke/prompt-to-signature.git
|
|
|
|
cd prompt-to-signature
|
|
```
|
|
|
|
2. Install dependencies:
|
|
```bash
|
|
uv sync
|
|
```
|
|
|
|
3. Set up environment variables:
|
|
```bash
|
|
# Create a .env file
|
|
echo "OPENROUTER_API_KEY=your_api_key_here" > .env
|
|
```
|
|
|
|
Get your OpenRouter API key from [openrouter.ai](https://openrouter.ai/)
|
|
|
|
### Usage
|
|
|
|
```python
|
|
from agent import PromptToSignatureAgent, PromptToSignatureConfig
|
|
|
|
# Initialize the agent
|
|
config = PromptToSignatureConfig(
|
|
lm="openrouter/anthropic/claude-haiku-4.5",
|
|
max_tokens=16000,
|
|
temperature=1.0,
|
|
)
|
|
agent = PromptToSignatureAgent(config)
|
|
|
|
# Generate a signature from a prompt
|
|
prompt = """
|
|
Create a signature that takes a customer review and extracts:
|
|
- Overall sentiment (positive, negative, neutral)
|
|
- Key issues mentioned
|
|
- Recommended rating (1-5 stars)
|
|
"""
|
|
|
|
result = agent(prompt)
|
|
|
|
# Generate executable Python code
|
|
code = agent.generate_code(result)
|
|
print(code)
|
|
```
|
|
|
|
### Interactive Refinement Mode
|
|
|
|
Use the refinement loop to iteratively improve signatures:
|
|
|
|
```python
|
|
# Enable refinement with user feedback
|
|
result = agent(prompt, refine=True)
|
|
|
|
# The agent will:
|
|
# 1. Generate an initial signature
|
|
# 2. Show it to you for review
|
|
# 3. Ask if you're satisfied (y/n)
|
|
# 4. If not, ask for feedback
|
|
# 5. Regenerate with your feedback
|
|
# 6. Repeat up to max_attempts_to_refine times
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Simple Translation Signature
|
|
|
|
```python
|
|
prompt = "Translate text from English to Spanish"
|
|
result = agent(prompt)
|
|
code = agent.generate_code(result)
|
|
```
|
|
|
|
**Generated Output:**
|
|
```python
|
|
import dspy
|
|
|
|
class TranslateEnglishToSpanish(dspy.Signature):
|
|
"""Translate English text to Spanish"""
|
|
|
|
english_text: str = dspy.InputField(desc="The English text to translate")
|
|
spanish_translation: str = dspy.OutputField(desc="The translated Spanish text")
|
|
```
|
|
|
|
### Complex Sentiment Analysis
|
|
|
|
```python
|
|
prompt = """
|
|
Analyze product reviews and extract:
|
|
- Overall sentiment (positive/negative/mixed/neutral)
|
|
- Confidence score (0-1)
|
|
- Specific issues mentioned
|
|
- Specific praise points
|
|
- Predicted star rating (1-5)
|
|
"""
|
|
|
|
result = agent(prompt)
|
|
code = agent.generate_code(result)
|
|
```
|
|
|
|
**Generated Output:**
|
|
```python
|
|
import dspy
|
|
from typing import List, Literal
|
|
from pydantic import BaseModel, Field
|
|
|
|
class Issue(BaseModel):
|
|
"""Represents a specific issue mentioned in the review"""
|
|
|
|
description: str = Field(description="Description of the issue")
|
|
severity: Literal["minor", "moderate", "severe"] = Field(description="Severity level of the issue")
|
|
|
|
class PraisePoint(BaseModel):
|
|
"""Represents a specific praise point mentioned in the review"""
|
|
|
|
description: str = Field(description="Description of the praise")
|
|
|
|
class SentimentAnalysis(BaseModel):
|
|
"""Complete sentiment analysis result"""
|
|
|
|
overall_sentiment: Literal["positive", "negative", "mixed", "neutral"] = Field(description="Overall sentiment classification")
|
|
confidence_score: float = Field(description="Confidence score between 0 and 1")
|
|
issues: List[Issue] = Field(description="List of specific issues mentioned")
|
|
praise_points: List[PraisePoint] = Field(description="List of specific praise points")
|
|
predicted_rating: int = Field(description="Predicted star rating from 1 to 5")
|
|
|
|
class AnalyzeProductReview(dspy.Signature):
|
|
"""Analyze product reviews to extract sentiment, issues, praise, and rating"""
|
|
|
|
review_text: str = dspy.InputField(desc="The product review text to analyze")
|
|
analysis: SentimentAnalysis = dspy.OutputField(desc="Complete sentiment analysis with structured output")
|
|
```
|
|
|
|
### Multimodal Signatures
|
|
|
|
```python
|
|
prompt = "Count the number of people in an image and describe what they're doing"
|
|
result = agent(prompt)
|
|
```
|
|
|
|
**Generated Output:**
|
|
```python
|
|
import dspy
|
|
|
|
class CountPeopleInImage(dspy.Signature):
|
|
"""Count people in an image and describe their activities"""
|
|
|
|
image: dspy.Image = dspy.InputField(desc="The image to analyze")
|
|
people_count: int = dspy.OutputField(desc="Number of people detected")
|
|
activity_description: str = dspy.OutputField(desc="Description of what people are doing")
|
|
```
|
|
|
|
## Architecture
|
|
|
|
### Core Components
|
|
|
|
#### 1. SignatureGenerator (`agent/modules.py`)
|
|
|
|
The heart of the system. This DSPy module:
|
|
- Takes natural language prompts as input
|
|
- Uses a structured `SignatureGeneration` signature to ensure consistent output
|
|
- Generates properly typed field definitions
|
|
- Supports complex types: Pydantic models, Literal types, Lists, Dicts, Optional fields
|
|
- Creates executable Python code from predictions
|
|
|
|
**Key Classes:**
|
|
- `FieldType`: Enum of all supported Python types
|
|
- `GeneratedField`: Represents a single input/output field
|
|
- `PydanticModelSchema`: Schema for nested Pydantic models
|
|
- `SignatureGenerator`: Main DSPy module for signature generation
|
|
|
|
#### 2. PromptToSignatureAgent (`agent/index.py`)
|
|
|
|
The high-level agent wrapper that:
|
|
- Extends `modaic.PrecompiledAgent` for hub deployment
|
|
- Configures LLM models (defaults to Claude Haiku 4.5 via OpenRouter)
|
|
- Implements refinement loop with `dspy.Refine`
|
|
- Validates signatures with user feedback
|
|
|
|
**Configuration Options:**
|
|
```python
|
|
class PromptToSignatureConfig:
|
|
lm: str = "openrouter/anthropic/claude-haiku-4.5"
|
|
refine_lm: str = "openrouter/anthropic/claude-haiku-4.5"
|
|
max_tokens: int = 16000
|
|
temperature: float = 1.0
|
|
max_attempts_to_refine: int = 5
|
|
```
|
|
|
|
#### 3. Utilities (`agent/utils.py`)
|
|
|
|
Helper functions for:
|
|
- Converting names to snake_case
|
|
- Saving generated signatures to files
|
|
- Managing OpenRouter API configuration
|
|
|
|
### How It Works
|
|
|
|
1. **Input Processing**: Natural language prompt describing the desired functionality
|
|
2. **LLM Generation**: DSPy's structured prediction generates typed field definitions
|
|
3. **Schema Construction**: Builds internal representation of the signature with full type info
|
|
4. **Code Generation**: Converts the structured representation to executable Python code
|
|
5. **Optional Refinement**: User can provide feedback to improve the signature iteratively
|
|
|
|
### Supported Field Types
|
|
|
|
- **Basic types**: `str`, `int`, `float`, `bool`
|
|
- **Collections**: `list[str]`, `list[int]`, `dict[str, Any]`, etc.
|
|
- **Optional types**: `Optional[str]`, `Optional[int]`, etc.
|
|
- **Literal types**: For enumerated values like `Literal["positive", "negative", "neutral"]`
|
|
- **Multimodal**: `dspy.Image`, `dspy.Audio`
|
|
- **Pydantic models**: Complex nested structures with validation
|
|
|
|
## Advanced Usage
|
|
|
|
### Pushing to Modaic Hub
|
|
|
|
To share your agent or update the hub version:
|
|
|
|
```python
|
|
from agent import PromptToSignatureAgent, PromptToSignatureConfig
|
|
|
|
agent = PromptToSignatureAgent(PromptToSignatureConfig())
|
|
agent.push_to_hub("your-username/agent-name", with_code=True)
|
|
```
|
|
|
|
### Dynamic Signature Classes
|
|
|
|
Create DSPy signature classes at runtime:
|
|
|
|
```python
|
|
result = agent("Translate English to German")
|
|
|
|
# Create a dynamic signature class
|
|
SignatureClass = agent.signature_generator.create_signature_class(result)
|
|
|
|
# Use it with DSPy modules
|
|
predictor = dspy.Predict(SignatureClass)
|
|
output = predictor(english_text="Hello, world!")
|
|
```
|
|
|
|
### Custom LLM Backends
|
|
|
|
Use different LLM providers:
|
|
|
|
```python
|
|
import dspy
|
|
from agent import PromptToSignatureAgent, PromptToSignatureConfig
|
|
|
|
# Configure custom LM
|
|
custom_lm = dspy.LM(
|
|
model="openai/gpt-4",
|
|
api_key="your-key",
|
|
max_tokens=8000,
|
|
)
|
|
|
|
# Initialize agent
|
|
agent = PromptToSignatureAgent(PromptToSignatureConfig())
|
|
agent.signature_generator.set_lm(custom_lm)
|
|
```
|
|
|
|
## Configuration
|
|
|
|
### Environment Variables
|
|
|
|
- `OPENROUTER_API_KEY`: Your OpenRouter API key (required for local usage)
|
|
|
|
### Agent Configuration
|
|
|
|
```python
|
|
PromptToSignatureConfig(
|
|
lm="openrouter/anthropic/claude-haiku-4.5", # Main LLM model
|
|
refine_lm="openrouter/anthropic/claude-haiku-4.5", # Refinement LLM
|
|
max_tokens=16000, # Max tokens per generation
|
|
temperature=1.0, # Sampling temperature
|
|
max_attempts_to_refine=5, # Max refinement iterations
|
|
)
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues
|
|
|
|
**"Refinement failed"**: This usually means the signature couldn't be improved after max attempts. Try:
|
|
- Adjusting your prompt to be more specific
|
|
- Increasing `max_attempts_to_refine`
|
|
- Providing clearer feedback during refinement
|
|
|
|
**Missing API Key**: Ensure `OPENROUTER_API_KEY` is set in your `.env` file
|
|
|
|
**Type Validation Errors**: The agent validates all field types. If generation fails, try:
|
|
- Simplifying your prompt
|
|
- Being more explicit about expected output structure
|
|
|
|
## Acknowledgments
|
|
|
|
Built with:
|
|
- [DSPy](https://github.com/stanfordnlp/dspy) - Framework for programming foundation models
|
|
- [Modaic](https://modaic.dev/) - Agent orchestration and hub
|
|
- [OpenRouter](https://openrouter.ai/) - Unified LLM API access
|