Files
prompt-to-signature/README.md
2025-11-05 09:58:12 -05:00

372 lines
11 KiB
Markdown

# Prompt To Signature
Transform your ideas and prompts into executable DSPy signatures using AI! This agent automatically converts natural language descriptions into properly typed, production-ready DSPy signatures with support for complex nested structures, Pydantic models, and more.
## Features
- **Natural Language to DSPy Signature**: Convert ideas like "Translate English to German" or "Analyze sentiment from product reviews" into full `dspy.Signature` classes
- **Smart Type Inference**: Automatically determines appropriate field types (str, int, list, dict, Pydantic models, Literal types, etc.)
- **Dynamic Class Factory**: Generate and use `dspy.Signature` classes at runtime
- **Interactive Refinement**: Iteratively improve generated signatures by providing feedback in a loop
- **Complex Nested Structures**: Full support for Pydantic models with nested fields for structured outputs
- **Code Generation**: Export signatures as clean, executable Python code
## Quick Start with Modaic AutoAgent
The easiest way to use this agent is by loading it from Modaic Hub:
```python
from modaic import AutoAgent
# Load the precompiled agent from hub
agent = AutoAgent.from_precompiled("fadeleke/prompt-to-signature")
# Use the agent
prompt = "Translate text from English to French"
result = agent(prompt)
# Generate executable code
code = agent.generate_code(result)
print(code)
```
### With Custom Configuration
Override default configuration parameters:
```python
from modaic import AutoAgent
agent = AutoAgent.from_precompiled(
"fadeleke/prompt-to-signature",
config={
"lm": "openrouter/anthropic/claude-sonnet-4.5",
"max_tokens": 32000,
"temperature": 0.7,
}
)
result = agent("Summarize a document and extract key entities")
```
## Manual Installation & Setup
If you prefer to run the agent locally:
### Prerequisites
- Python 3.11+
- [uv](https://docs.astral.sh/uv/) package manager
### Installation
1. Clone the repository:
```bash
git clone <repository-url>
cd vibe-dspy-agent
```
2. Install dependencies:
```bash
uv sync
```
3. Set up environment variables:
```bash
# Create a .env file
echo "OPENROUTER_API_KEY=your_api_key_here" > .env
```
Get your OpenRouter API key from [openrouter.ai](https://openrouter.ai/)
### Usage
```python
from agent import PromptToSignatureAgent, PromptToSignatureConfig
# Initialize the agent
config = PromptToSignatureConfig(
lm="openrouter/anthropic/claude-haiku-4.5",
max_tokens=16000,
temperature=1.0,
)
agent = PromptToSignatureAgent(config)
# Generate a signature from a prompt
prompt = """
Create a signature that takes a customer review and extracts:
- Overall sentiment (positive, negative, neutral)
- Key issues mentioned
- Recommended rating (1-5 stars)
"""
result = agent(prompt)
# Generate executable Python code
code = agent.generate_code(result)
print(code)
```
### Interactive Refinement Mode
Use the refinement loop to iteratively improve signatures:
```python
# Enable refinement with user feedback
result = agent(prompt, refine=True)
# The agent will:
# 1. Generate an initial signature
# 2. Show it to you for review
# 3. Ask if you're satisfied (y/n)
# 4. If not, ask for feedback
# 5. Regenerate with your feedback
# 6. Repeat up to max_attempts_to_refine times
```
## Examples
### Simple Translation Signature
```python
prompt = "Translate text from English to Spanish"
result = agent(prompt)
code = agent.generate_code(result)
```
**Generated Output:**
```python
import dspy
class TranslateEnglishToSpanish(dspy.Signature):
"""Translate English text to Spanish"""
english_text: str = dspy.InputField(desc="The English text to translate")
spanish_translation: str = dspy.OutputField(desc="The translated Spanish text")
```
### Complex Sentiment Analysis
```python
prompt = """
Analyze product reviews and extract:
- Overall sentiment (positive/negative/mixed/neutral)
- Confidence score (0-1)
- Specific issues mentioned
- Specific praise points
- Predicted star rating (1-5)
"""
result = agent(prompt)
code = agent.generate_code(result)
```
**Generated Output:**
```python
import dspy
from typing import List, Literal
from pydantic import BaseModel, Field
class Issue(BaseModel):
"""Represents a specific issue mentioned in the review"""
description: str = Field(description="Description of the issue")
severity: Literal["minor", "moderate", "severe"] = Field(description="Severity level of the issue")
class PraisePoint(BaseModel):
"""Represents a specific praise point mentioned in the review"""
description: str = Field(description="Description of the praise")
class SentimentAnalysis(BaseModel):
"""Complete sentiment analysis result"""
overall_sentiment: Literal["positive", "negative", "mixed", "neutral"] = Field(description="Overall sentiment classification")
confidence_score: float = Field(description="Confidence score between 0 and 1")
issues: List[Issue] = Field(description="List of specific issues mentioned")
praise_points: List[PraisePoint] = Field(description="List of specific praise points")
predicted_rating: int = Field(description="Predicted star rating from 1 to 5")
class AnalyzeProductReview(dspy.Signature):
"""Analyze product reviews to extract sentiment, issues, praise, and rating"""
review_text: str = dspy.InputField(desc="The product review text to analyze")
analysis: SentimentAnalysis = dspy.OutputField(desc="Complete sentiment analysis with structured output")
```
### Multimodal Signatures
```python
prompt = "Count the number of people in an image and describe what they're doing"
result = agent(prompt)
```
**Generated Output:**
```python
import dspy
class CountPeopleInImage(dspy.Signature):
"""Count people in an image and describe their activities"""
image: dspy.Image = dspy.InputField(desc="The image to analyze")
people_count: int = dspy.OutputField(desc="Number of people detected")
activity_description: str = dspy.OutputField(desc="Description of what people are doing")
```
## Architecture
### Core Components
#### 1. SignatureGenerator (`agent/modules.py`)
The heart of the system. This DSPy module:
- Takes natural language prompts as input
- Uses a structured `SignatureGeneration` signature to ensure consistent output
- Generates properly typed field definitions
- Supports complex types: Pydantic models, Literal types, Lists, Dicts, Optional fields
- Creates executable Python code from predictions
**Key Classes:**
- `FieldType`: Enum of all supported Python types
- `GeneratedField`: Represents a single input/output field
- `PydanticModelSchema`: Schema for nested Pydantic models
- `SignatureGenerator`: Main DSPy module for signature generation
#### 2. PromptToSignatureAgent (`agent/index.py`)
The high-level agent wrapper that:
- Extends `modaic.PrecompiledAgent` for hub deployment
- Configures LLM models (defaults to Claude Haiku 4.5 via OpenRouter)
- Implements refinement loop with `dspy.Refine`
- Validates signatures with user feedback
**Configuration Options:**
```python
class PromptToSignatureConfig:
lm: str = "openrouter/anthropic/claude-haiku-4.5"
refine_lm: str = "openrouter/anthropic/claude-haiku-4.5"
max_tokens: int = 16000
temperature: float = 1.0
max_attempts_to_refine: int = 5
```
#### 3. Utilities (`agent/utils.py`)
Helper functions for:
- Converting names to snake_case
- Saving generated signatures to files
- Managing OpenRouter API configuration
### How It Works
1. **Input Processing**: Natural language prompt describing the desired functionality
2. **LLM Generation**: DSPy's structured prediction generates typed field definitions
3. **Schema Construction**: Builds internal representation of the signature with full type info
4. **Code Generation**: Converts the structured representation to executable Python code
5. **Optional Refinement**: User can provide feedback to improve the signature iteratively
### Supported Field Types
- **Basic types**: `str`, `int`, `float`, `bool`
- **Collections**: `list[str]`, `list[int]`, `dict[str, Any]`, etc.
- **Optional types**: `Optional[str]`, `Optional[int]`, etc.
- **Literal types**: For enumerated values like `Literal["positive", "negative", "neutral"]`
- **Multimodal**: `dspy.Image`, `dspy.Audio`
- **Pydantic models**: Complex nested structures with validation
## Advanced Usage
### Pushing to Modaic Hub
To share your agent or update the hub version:
```python
from agent import PromptToSignatureAgent, PromptToSignatureConfig
agent = PromptToSignatureAgent(PromptToSignatureConfig())
agent.push_to_hub("your-username/agent-name", with_code=True)
```
### Dynamic Signature Classes
Create DSPy signature classes at runtime:
```python
result = agent("Translate English to German")
# Create a dynamic signature class
SignatureClass = agent.signature_generator.create_signature_class(result)
# Use it with DSPy modules
predictor = dspy.Predict(SignatureClass)
output = predictor(english_text="Hello, world!")
```
### Custom LLM Backends
Use different LLM providers:
```python
import dspy
from agent import PromptToSignatureAgent, PromptToSignatureConfig
# Configure custom LM
custom_lm = dspy.LM(
model="openai/gpt-4",
api_key="your-key",
max_tokens=8000,
)
# Initialize agent
agent = PromptToSignatureAgent(PromptToSignatureConfig())
agent.signature_generator.set_lm(custom_lm)
```
## Configuration
### Environment Variables
- `OPENROUTER_API_KEY`: Your OpenRouter API key (required for local usage)
### Agent Configuration
```python
PromptToSignatureConfig(
lm="openrouter/anthropic/claude-haiku-4.5", # Main LLM model
refine_lm="openrouter/anthropic/claude-haiku-4.5", # Refinement LLM
max_tokens=16000, # Max tokens per generation
temperature=1.0, # Sampling temperature
max_attempts_to_refine=5, # Max refinement iterations
)
```
## Troubleshooting
### Common Issues
**"Refinement failed"**: This usually means the signature couldn't be improved after max attempts. Try:
- Adjusting your prompt to be more specific
- Increasing `max_attempts_to_refine`
- Providing clearer feedback during refinement
**Missing API Key**: Ensure `OPENROUTER_API_KEY` is set in your `.env` file
**Type Validation Errors**: The agent validates all field types. If generation fails, try:
- Simplifying your prompt
- Being more explicit about expected output structure
## Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.
## License
[Add your license here]
## Acknowledgments
Built with:
- [DSPy](https://github.com/stanfordnlp/dspy) - Framework for programming foundation models
- [Modaic](https://modaic.dev/) - Agent orchestration and hub
- [OpenRouter](https://openrouter.ai/) - Unified LLM API access