(no commit message)
This commit is contained in:
264
README.md
264
README.md
@@ -1,2 +1,264 @@
|
||||
# jtbd-agent
|
||||
|
||||
# JTBD Idea Validator
|
||||
|
||||
A **Jobs to be Done (JTBD)** analysis agent powered by DSPy that validates business ideas through comprehensive framework-based evaluation.
|
||||
|
||||
## What it does
|
||||
|
||||
This tool performs systematic business idea validation using JTBD methodology:
|
||||
|
||||
- **Assumption Deconstruction**: Extract and classify core business assumptions (1-3 levels)
|
||||
- **JTBD Analysis**: Generate 5 distinct job statements with Four Forces (push/pull/anxiety/inertia)
|
||||
- **Moat Analysis**: Assess competitive advantages using innovation layers
|
||||
- **Scoring & Judgment**: Evaluate ideas across 5 criteria with detailed rationales
|
||||
- **Validation Planning**: Create actionable plans for assumption testing
|
||||
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
# Setup environment
|
||||
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
|
||||
pip install -U pip
|
||||
pip install -e .
|
||||
|
||||
# Configure LLM (required)
|
||||
export OPENAI_API_KEY=... # for OpenAI models
|
||||
export ANTHROPIC_API_KEY=... # for Claude models
|
||||
|
||||
# Run analysis on example
|
||||
python run_direct.py examples/rehab_exercise_tracking_rich.json
|
||||
|
||||
# Or specify custom output location
|
||||
python run_direct.py examples/insurance_photo_ai.json --output custom_reports/
|
||||
```
|
||||
|
||||
## Output Files
|
||||
|
||||
The tool generates organized reports in timestamped directories:
|
||||
|
||||
- **Gamma Presentations**: `gamma/presentation.md` (Gamma-ready) + `gamma/presentation.html` (preview)
|
||||
- **CSV Exports**: `csv/` - Structured data for spreadsheet analysis
|
||||
- **JSON Data**: `json/analysis_data.json` - Raw analysis data
|
||||
- **Charts**: `assets/` - Radar charts, waterfall charts, and Four Forces diagrams
|
||||
|
||||
## Technical Architecture
|
||||
|
||||
This implementation uses **DSPy** (Declarative Self-improving Language Programs) for structured LLM interactions through **Signatures** and **Modules**.
|
||||
|
||||
### DSPy Signatures
|
||||
|
||||
Signatures define input/output schemas for LLM tasks:
|
||||
|
||||
```python
|
||||
class DeconstructSig(dspy.Signature):
|
||||
"""Extract assumptions and classify levels.
|
||||
Return JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]"""
|
||||
idea: str = dspy.InputField()
|
||||
hunches: List[str] = dspy.InputField()
|
||||
assumptions_json: str = dspy.OutputField()
|
||||
|
||||
class JobsSig(dspy.Signature):
|
||||
"""Generate 5 distinct JTBD statements with Four Forces each."""
|
||||
context: str = dspy.InputField()
|
||||
constraints: str = dspy.InputField()
|
||||
jobs_json: str = dspy.OutputField()
|
||||
```
|
||||
|
||||
### DSPy Modules
|
||||
|
||||
Modules implement business logic with automatic prompt optimization:
|
||||
|
||||
- **`Deconstruct`**: Extracts assumptions with confidence scoring
|
||||
- **`Jobs`**: Generates JTBD statements with Four Forces analysis
|
||||
- **`Moat`**: Applies Doblin innovation framework + strategic triggers
|
||||
- **`JudgeScore`**: Evaluates ideas across 5 standardized criteria:
|
||||
- Underserved Opportunity
|
||||
- Strategic Impact
|
||||
- Market Scale
|
||||
- Solution Differentiability
|
||||
- Business Model Innovation
|
||||
|
||||
### Dual-Judge Arbitration
|
||||
|
||||
The system uses two independent judges with tie-breaking for scoring reliability:
|
||||
|
||||
```python
|
||||
USE_DOUBLE_JUDGE = os.getenv("JTBD_DOUBLE_JUDGE", "1") == "1" # default ON
|
||||
|
||||
def judge_with_arbitration(summary: str):
|
||||
if USE_DOUBLE_JUDGE:
|
||||
score1 = JudgeScore()(summary=summary)
|
||||
score2 = JudgeScore()(summary=summary)
|
||||
return merge_scores(score1, score2) # tie-breaker logic
|
||||
return JudgeScore()(summary=summary)
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
**Model Selection**: Edit `plugins/llm_dspy.py` → `configure_lm()` or set `JTBD_DSPY_MODEL`:
|
||||
|
||||
```bash
|
||||
export JTBD_DSPY_MODEL="gpt-4o-mini" # OpenAI
|
||||
export JTBD_DSPY_MODEL="claude-3-5-sonnet-20240620" # Anthropic
|
||||
```
|
||||
|
||||
**Other Options**:
|
||||
|
||||
- `JTBD_LLM_TEMPERATURE=0.2` - Response randomness (0.0-1.0)
|
||||
- `JTBD_DOUBLE_JUDGE=1` - Enable dual-judge arbitration (default: enabled)
|
||||
|
||||
## Input Format
|
||||
|
||||
Ideas are defined in JSON files with the following structure:
|
||||
|
||||
```json
|
||||
{
|
||||
"idea_id": "urn:idea:example:001",
|
||||
"title": "Your business idea title",
|
||||
"hunches": [
|
||||
"Key assumption about the problem",
|
||||
"Belief about customer behavior",
|
||||
"Market hypothesis"
|
||||
],
|
||||
"problem_statement": "Clear description of the problem",
|
||||
"solution_overview": "How your idea solves the problem",
|
||||
"target_customer": {
|
||||
"primary": "Main customer segment",
|
||||
"secondary": "Secondary users",
|
||||
"demographics": "Age, profession, context"
|
||||
},
|
||||
"value_propositions": ["Key benefit 1", "Key benefit 2"],
|
||||
"competitive_landscape": ["Competitor 1", "Competitor 2"],
|
||||
"revenue_streams": ["Revenue model 1", "Revenue model 2"]
|
||||
}
|
||||
```
|
||||
|
||||
See `examples/` directory for complete examples.
|
||||
|
||||
## Alternative Execution Methods
|
||||
|
||||
### Direct Python Script
|
||||
|
||||
```bash
|
||||
python run_direct.py your_idea.json
|
||||
```
|
||||
|
||||
### FastAPI Service (Optional)
|
||||
|
||||
Run as a service with HTTP endpoints:
|
||||
|
||||
```bash
|
||||
uvicorn service.dspy_sidecar:app --port 8088 --reload
|
||||
```
|
||||
|
||||
Exposes endpoints: `/deconstruct`, `/jobs`, `/moat`, `/judge`
|
||||
|
||||
### Prefect Flow (Advanced)
|
||||
|
||||
For complex orchestration scenarios using the Prefect workflow engine.
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Judge Optimization with DSPy
|
||||
|
||||
The system supports **compiled judge models** using DSPy's GEPA optimizer (reflective prompt evolution):
|
||||
|
||||
```bash
|
||||
# 1. Add training data to data/judge_train.jsonl
|
||||
# Format: {"summary": "...", "scorecard": {"criteria":[...], "total": 6.7}}
|
||||
|
||||
# 2. Train the judge using GEPA (evolutionary optimizer)
|
||||
python tools/optimize_judge.py --train data/judge_train.jsonl --out artifacts/judge_compiled.dspy --budget medium
|
||||
|
||||
# 3. Use the compiled judge (automatically loaded at runtime)
|
||||
export JTBD_JUDGE_COMPILED=artifacts/judge_compiled.dspy
|
||||
python run_direct.py your_idea.json
|
||||
```
|
||||
|
||||
**GEPA** is an evolutionary optimizer for prompt optimization that:
|
||||
- Captures full execution traces of DSPy modules
|
||||
- Uses reflection to evolve text components (prompts/instructions)
|
||||
- Allows textual feedback at predictor or system level
|
||||
- Outperforms reinforcement learning approaches
|
||||
|
||||
From the actual implementation in `tools/optimize_judge.py`:
|
||||
|
||||
```python
|
||||
from dspy.teleprompt import GEPA
|
||||
|
||||
def non_decreasing_metric(example, pred, trace=None, pred_name=None, pred_trace=None):
|
||||
"""Returns 1 if predicted total >= gold total, else 0."""
|
||||
try:
|
||||
p = json.loads(pred.scorecard_json)
|
||||
g = json.loads(example.scorecard_json)
|
||||
return 1.0 if p.get("total",0) >= g.get("total",0) else 0.0
|
||||
except Exception:
|
||||
return 0.0
|
||||
|
||||
# Budget options: "light", "medium", "heavy"
|
||||
tele = GEPA(metric=non_decreasing_metric, auto=budget)
|
||||
compiled = tele.compile(dspy.Predict(JudgeScoreSig), trainset=train)
|
||||
```
|
||||
|
||||
The compiled judge replaces the default `dspy.Predict` with an optimized program:
|
||||
|
||||
```python
|
||||
_compiled_judge = None
|
||||
if JUDGE_COMPILED_PATH and os.path.exists(JUDGE_COMPILED_PATH):
|
||||
with open(JUDGE_COMPILED_PATH, "rb") as f:
|
||||
_compiled_judge = pickle.load(f)
|
||||
|
||||
class JudgeScore(dspy.Module):
|
||||
def __init__(self):
|
||||
self.p = _compiled_judge or dspy.Predict(JudgeScoreSig) # fallback
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `OPENAI_API_KEY` / `ANTHROPIC_API_KEY` - API keys for LLM providers
|
||||
- `JTBD_DSPY_MODEL` - Model name (default: "gpt-4o-mini")
|
||||
- `JTBD_LLM_TEMPERATURE` - Temperature setting (default: 0.2)
|
||||
- `JTBD_LLM_SEED` - Random seed for reproducibility (default: 42)
|
||||
- `JTBD_DOUBLE_JUDGE` - Enable dual-judge arbitration (default: 1)
|
||||
- `JTBD_JUDGE_COMPILED` - Path to compiled judge model
|
||||
- `OTEL_SERVICE_NAME` / `DEPLOY_ENV` - Identify the service in OTLP exports (defaults: `jtbd-dspy-sidecar`, `dev`)
|
||||
- `OTLP_ENDPOINT` / `OTLP_HEADERS` - Configure OTLP HTTP exporter endpoint and optional headers
|
||||
- `MODAIC_AGENT_ID` / `MODAIC_AGENT_REV` - Load a precompiled Modaic agent instead of the local default
|
||||
- `MODAIC_TOKEN` - Authentication token for private Modaic repositories
|
||||
- `RETRIEVER_KIND` / `RETRIEVER_NOTES` - Retriever selection (e.g., `notes`) and seed data for contextual hints
|
||||
- `API_BEARER_TOKEN` - Optional bearer token required by the FastAPI service
|
||||
- `STREAM_CHUNK_SIZE` - Chunk size for SSE streaming responses (default: 60)
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
├── contracts/ # Pydantic models (v1 frozen contracts)
|
||||
├── core/ # Main business logic
|
||||
│ ├── pipeline.py # Main analysis pipeline
|
||||
│ ├── score.py # Scoring algorithms
|
||||
│ ├── plan.py # Validation planning
|
||||
│ └── export_*.py # Output formatters
|
||||
├── plugins/ # External integrations
|
||||
│ ├── llm_dspy.py # DSPy LLM interface
|
||||
│ └── charts_quickchart.py # Chart generation
|
||||
├── service/ # FastAPI service
|
||||
├── orchestration/ # Prefect flows
|
||||
├── examples/ # Sample business ideas
|
||||
├── tools/ # Optimization utilities
|
||||
└── run_direct.py # Main CLI entry point
|
||||
```
|
||||
|
||||
## Dependencies
|
||||
|
||||
- **DSPy**: Language model orchestration framework
|
||||
- **Pydantic**: Data validation and serialization
|
||||
- **FastAPI/Uvicorn**: Optional HTTP service
|
||||
- **Modaic**: Precompiled agent runtime with retriever support
|
||||
- **OpenTelemetry**: Request tracing + OTLP exporter (service observability)
|
||||
- **sse-starlette**: Server-Sent Events streaming for OpenAI-compatible responses
|
||||
- **Prefect**: Optional workflow orchestration
|
||||
- **Requests**: HTTP client for external services
|
||||
|
||||
## Contract Stability
|
||||
|
||||
Data contracts in `contracts/*_v1.py` are frozen. For changes, create new `v2` versions rather than modifying existing contracts to ensure backward compatibility.
|
||||
|
||||
136
agent.json
Normal file
136
agent.json
Normal file
@@ -0,0 +1,136 @@
|
||||
{
|
||||
"_deconstruct.p": {
|
||||
"traces": [],
|
||||
"train": [],
|
||||
"demos": [],
|
||||
"signature": {
|
||||
"instructions": "Extract assumptions and classify levels.\nReturn JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]",
|
||||
"fields": [
|
||||
{
|
||||
"prefix": "Idea:",
|
||||
"description": "${idea}"
|
||||
},
|
||||
{
|
||||
"prefix": "Hunches:",
|
||||
"description": "${hunches}"
|
||||
},
|
||||
{
|
||||
"prefix": "Assumptions Json:",
|
||||
"description": "${assumptions_json}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"lm": null
|
||||
},
|
||||
"_jobs.p": {
|
||||
"traces": [],
|
||||
"train": [],
|
||||
"demos": [],
|
||||
"signature": {
|
||||
"instructions": "Generate 5 distinct JTBD statements with Four Forces (push/pull/anxiety/inertia) each.\nReturn JSON list: [{statement, forces:{push:[], pull:[], anxiety:[], inertia:[]}}]",
|
||||
"fields": [
|
||||
{
|
||||
"prefix": "Context:",
|
||||
"description": "${context}"
|
||||
},
|
||||
{
|
||||
"prefix": "Constraints:",
|
||||
"description": "${constraints}"
|
||||
},
|
||||
{
|
||||
"prefix": "Jobs Json:",
|
||||
"description": "${jobs_json}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"lm": null
|
||||
},
|
||||
"_moat.p": {
|
||||
"traces": [],
|
||||
"train": [],
|
||||
"demos": [],
|
||||
"signature": {
|
||||
"instructions": "Apply Doblin/10-types + timing/ops/customer/value triggers to strengthen concept.\nReturn JSON list: [{type, trigger, effect}]",
|
||||
"fields": [
|
||||
{
|
||||
"prefix": "Concept:",
|
||||
"description": "${concept}"
|
||||
},
|
||||
{
|
||||
"prefix": "Triggers:",
|
||||
"description": "${triggers}"
|
||||
},
|
||||
{
|
||||
"prefix": "Layers Json:",
|
||||
"description": "${layers_json}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"lm": null
|
||||
},
|
||||
"react.react": {
|
||||
"traces": [],
|
||||
"train": [],
|
||||
"demos": [],
|
||||
"signature": {
|
||||
"instructions": "Given the fields `question`, produce the fields `answer`.\n\nYou are an Agent. In each episode, you will be given the fields `question` as input. And you can see your past trajectory so far.\nYour goal is to use one or more of the supplied tools to collect any necessary information for producing `answer`.\n\nTo do this, you will interleave next_thought, next_tool_name, and next_tool_args in each turn, and also when finishing the task.\nAfter each tool call, you receive a resulting observation, which gets appended to your trajectory.\n\nWhen writing next_thought, you may reason about the current situation and plan for future steps.\nWhen selecting the next_tool_name and its next_tool_args, the tool must be one of:\n\n(1) retrieve. It takes arguments {'query': {'type': 'string'}}.\n(2) deconstruct. It takes arguments {'idea': {'type': 'string'}, 'hunches': {'anyOf': [{'items': {'type': 'string'}, 'type': 'array'}, {'type': 'null'}], 'default': None}}.\n(3) jobs. It takes arguments {'context': {'anyOf': [{'additionalProperties': True, 'type': 'object'}, {'type': 'null'}], 'default': None}, 'constraints': {'anyOf': [{'items': {'type': 'string'}, 'type': 'array'}, {'type': 'null'}], 'default': None}}.\n(4) moat. It takes arguments {'concept': {'type': 'string'}, 'triggers': {'anyOf': [{'type': 'string'}, {'type': 'null'}], 'default': ''}}.\n(5) judge. It takes arguments {'summary': {'type': 'string'}}.\n(6) finish, whose description is <desc>Marks the task as complete. That is, signals that all information for producing the outputs, i.e. `answer`, are now available to be extracted.</desc>. It takes arguments {}.\nWhen providing `next_tool_args`, the value inside the field must be in JSON format",
|
||||
"fields": [
|
||||
{
|
||||
"prefix": "Question:",
|
||||
"description": "${question}"
|
||||
},
|
||||
{
|
||||
"prefix": "Trajectory:",
|
||||
"description": "${trajectory}"
|
||||
},
|
||||
{
|
||||
"prefix": "Next Thought:",
|
||||
"description": "${next_thought}"
|
||||
},
|
||||
{
|
||||
"prefix": "Next Tool Name:",
|
||||
"description": "${next_tool_name}"
|
||||
},
|
||||
{
|
||||
"prefix": "Next Tool Args:",
|
||||
"description": "${next_tool_args}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"lm": null
|
||||
},
|
||||
"react.extract.predict": {
|
||||
"traces": [],
|
||||
"train": [],
|
||||
"demos": [],
|
||||
"signature": {
|
||||
"instructions": "Given the fields `question`, produce the fields `answer`.",
|
||||
"fields": [
|
||||
{
|
||||
"prefix": "Question:",
|
||||
"description": "${question}"
|
||||
},
|
||||
{
|
||||
"prefix": "Trajectory:",
|
||||
"description": "${trajectory}"
|
||||
},
|
||||
{
|
||||
"prefix": "Reasoning: Let's think step by step in order to",
|
||||
"description": "${reasoning}"
|
||||
},
|
||||
{
|
||||
"prefix": "Answer:",
|
||||
"description": "${answer}"
|
||||
}
|
||||
]
|
||||
},
|
||||
"lm": null
|
||||
},
|
||||
"metadata": {
|
||||
"dependency_versions": {
|
||||
"python": "3.10",
|
||||
"dspy": "3.0.3",
|
||||
"cloudpickle": "3.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
5
auto_classes.json
Normal file
5
auto_classes.json
Normal file
@@ -0,0 +1,5 @@
|
||||
{
|
||||
"AutoConfig": "service.modaic_agent.JTBDConfig",
|
||||
"AutoAgent": "service.modaic_agent.JTBDDSPyAgent",
|
||||
"AutoRetriever": "service.retrievers.NotesRetriever"
|
||||
}
|
||||
5
config.json
Normal file
5
config.json
Normal file
@@ -0,0 +1,5 @@
|
||||
{
|
||||
"default_mode": "deconstruct",
|
||||
"allow_freeform_route": true,
|
||||
"return_json": true
|
||||
}
|
||||
11
contracts/assumption_v1.py
Normal file
11
contracts/assumption_v1.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from pydantic import BaseModel, Field, ConfigDict
|
||||
from typing import List, Optional
|
||||
|
||||
class AssumptionV1(BaseModel):
|
||||
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
|
||||
assumption_id: str
|
||||
text: str
|
||||
level: int = Field(ge=1, le=3, description="1=observed,2=educated,3=strategic")
|
||||
confidence: float = Field(ge=0.0, le=1.0)
|
||||
evidence: List[str] = []
|
||||
validation_exp_id: Optional[str] = None
|
||||
7
contracts/innovation_layer_v1.py
Normal file
7
contracts/innovation_layer_v1.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
class InnovationLayerV1(BaseModel):
|
||||
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
|
||||
layer_id: str
|
||||
type: str
|
||||
trigger: str
|
||||
effect: str
|
||||
8
contracts/job_v1.py
Normal file
8
contracts/job_v1.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from typing import Dict, List
|
||||
|
||||
class JobV1(BaseModel):
|
||||
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
|
||||
job_id: str
|
||||
statement: str
|
||||
forces: Dict[str, List[str]] # push/pull/anxiety/inertia
|
||||
14
contracts/scorecard_v1.py
Normal file
14
contracts/scorecard_v1.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from pydantic import BaseModel, Field, ConfigDict
|
||||
from typing import List
|
||||
|
||||
class Criterion(BaseModel):
|
||||
name: str
|
||||
score: float = Field(ge=0, le=10)
|
||||
rationale: str
|
||||
|
||||
class ScorecardV1(BaseModel):
|
||||
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
|
||||
target_id: str
|
||||
scheme: str = "v1"
|
||||
criteria: List[Criterion]
|
||||
total: float = Field(ge=0, le=10)
|
||||
173
plugins/llm_dspy.py
Normal file
173
plugins/llm_dspy.py
Normal file
@@ -0,0 +1,173 @@
|
||||
import os, json, hashlib, random
|
||||
import dspy
|
||||
from typing import List, Dict, Tuple
|
||||
from contracts.assumption_v1 import AssumptionV1
|
||||
from contracts.job_v1 import JobV1
|
||||
from contracts.scorecard_v1 import ScorecardV1, Criterion
|
||||
from contracts.innovation_layer_v1 import InnovationLayerV1
|
||||
|
||||
TEMPERATURE = float(os.getenv("JTBD_LLM_TEMPERATURE", "0.2"))
|
||||
SEED = int(os.getenv("JTBD_LLM_SEED", "42"))
|
||||
USE_DOUBLE_JUDGE = os.getenv("JTBD_DOUBLE_JUDGE", "1") == "1" # default ON
|
||||
|
||||
def _uid(s: str) -> str:
|
||||
return hashlib.sha1(s.encode()).hexdigest()[:10]
|
||||
|
||||
def configure_lm():
|
||||
"""Configure DSPy global LLM. Edit model name here to your provider choice."""
|
||||
model = os.getenv("JTBD_DSPY_MODEL", "gpt-4o-mini")
|
||||
|
||||
# Check if it's a Claude model
|
||||
if "claude" in model.lower():
|
||||
try:
|
||||
lm = dspy.Anthropic(model=model, max_tokens=4000, temperature=TEMPERATURE)
|
||||
except Exception:
|
||||
# Fallback to generic LM
|
||||
lm = dspy.LM(model=model, max_tokens=4000, temperature=TEMPERATURE)
|
||||
else:
|
||||
# Try OpenAI first
|
||||
try:
|
||||
lm = dspy.OpenAI(model=model, max_tokens=4000, temperature=TEMPERATURE, seed=SEED)
|
||||
except Exception:
|
||||
# Fallback to a generic LM
|
||||
lm = dspy.LM(model=model, max_tokens=4000, temperature=TEMPERATURE)
|
||||
dspy.configure(lm=lm)
|
||||
|
||||
# ---------------- Signatures ----------------
|
||||
class DeconstructSig(dspy.Signature):
|
||||
"""Extract assumptions and classify levels.
|
||||
Return JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]"""
|
||||
idea: str = dspy.InputField()
|
||||
hunches: List[str] = dspy.InputField()
|
||||
assumptions_json: str = dspy.OutputField()
|
||||
|
||||
class JobsSig(dspy.Signature):
|
||||
"""Generate 5 distinct JTBD statements with Four Forces (push/pull/anxiety/inertia) each.
|
||||
Return JSON list: [{statement, forces:{push:[], pull:[], anxiety:[], inertia:[]}}]"""
|
||||
context: str = dspy.InputField()
|
||||
constraints: str = dspy.InputField()
|
||||
jobs_json: str = dspy.OutputField()
|
||||
|
||||
class MoatSig(dspy.Signature):
|
||||
"""Apply Doblin/10-types + timing/ops/customer/value triggers to strengthen concept.
|
||||
Return JSON list: [{type, trigger, effect}]"""
|
||||
concept: str = dspy.InputField()
|
||||
triggers: str = dspy.InputField()
|
||||
layers_json: str = dspy.OutputField()
|
||||
|
||||
class JudgeScoreSig(dspy.Signature):
|
||||
"""Score business idea on exactly these 5 criteria (0-10 scale) with rationales.
|
||||
Return JSON: {"criteria":[{"name":"Underserved Opportunity","score":7.0,"rationale":"Clear need exists..."}, {"name":"Strategic Impact","score":6.0,"rationale":"..."}, {"name":"Market Scale","score":8.0,"rationale":"..."}, {"name":"Solution Differentiability","score":5.0,"rationale":"..."}, {"name":"Business Model Innovation","score":7.0,"rationale":"..."}], "total":6.6}"""
|
||||
summary: str = dspy.InputField()
|
||||
scorecard_json: str = dspy.OutputField()
|
||||
|
||||
# ---------------- Modules ----------------
|
||||
class Deconstruct(dspy.Module):
|
||||
def __init__(self): super().__init__(); self.p = dspy.Predict(DeconstructSig)
|
||||
def forward(self, idea: str, hunches: List[str]):
|
||||
out = self.p(idea=idea, hunches=hunches)
|
||||
data = json.loads(out.assumptions_json)
|
||||
# post-process: bound / defaults
|
||||
items = []
|
||||
for obj in data[:8]:
|
||||
text = obj.get("text","").strip()
|
||||
if not text: continue
|
||||
level = int(obj.get("level", 2))
|
||||
level = 1 if level < 1 else 3 if level > 3 else level
|
||||
conf = float(obj.get("confidence", 0.6))
|
||||
conf = max(0.0, min(1.0, conf))
|
||||
items.append(AssumptionV1(
|
||||
assumption_id=f"assump:{_uid(text)}", text=text, level=level, confidence=conf,
|
||||
evidence=[e for e in obj.get("evidence", []) if isinstance(e, str)]
|
||||
))
|
||||
return items
|
||||
|
||||
class Jobs(dspy.Module):
|
||||
def __init__(self): super().__init__(); self.p = dspy.Predict(JobsSig)
|
||||
def forward(self, context: Dict[str,str], constraints: List[str]):
|
||||
out = self.p(context=json.dumps(context), constraints=json.dumps(constraints))
|
||||
arr = json.loads(out.jobs_json)
|
||||
jobs = []
|
||||
seen = set()
|
||||
for obj in arr[:12]:
|
||||
stmt = obj.get("statement","").strip()
|
||||
if not stmt or stmt in seen: continue
|
||||
seen.add(stmt)
|
||||
forces = obj.get("forces",{}) or {}
|
||||
for k in ["push","pull","anxiety","inertia"]:
|
||||
forces.setdefault(k, [])
|
||||
jobs.append(JobV1(job_id=f"job:{_uid(stmt)}", statement=stmt, forces=forces))
|
||||
if len(jobs) >= 5: break
|
||||
return jobs
|
||||
|
||||
class Moat(dspy.Module):
|
||||
def __init__(self): super().__init__(); self.p = dspy.Predict(MoatSig)
|
||||
def forward(self, concept: str, triggers: str):
|
||||
out = self.p(concept=concept, triggers=triggers)
|
||||
arr = json.loads(out.layers_json)
|
||||
layers = []
|
||||
for obj in arr[:6]:
|
||||
t = str(obj.get("type","")).strip()
|
||||
tr = str(obj.get("trigger","")).strip()
|
||||
ef = str(obj.get("effect","")).strip()
|
||||
if not t or not tr or not ef: continue
|
||||
layers.append(InnovationLayerV1(layer_id=f"layer:{_uid(t+tr+ef)}", type=t, trigger=tr, effect=ef))
|
||||
return layers
|
||||
|
||||
CRITERIA = ["Underserved Opportunity","Strategic Impact","Market Scale","Solution Differentiability","Business Model Innovation"]
|
||||
|
||||
|
||||
import pickle
|
||||
JUDGE_COMPILED_PATH = os.getenv("JTBD_JUDGE_COMPILED")
|
||||
_compiled_judge = None
|
||||
if JUDGE_COMPILED_PATH and os.path.exists(JUDGE_COMPILED_PATH):
|
||||
try:
|
||||
with open(JUDGE_COMPILED_PATH, "rb") as f:
|
||||
_compiled_judge = pickle.load(f)
|
||||
except Exception:
|
||||
_compiled_judge = None
|
||||
|
||||
class JudgeScore(dspy.Module):
|
||||
def __init__(self): super().__init__(); self.p = _compiled_judge or dspy.Predict(JudgeScoreSig)
|
||||
def forward(self, summary: str):
|
||||
out = self.p(summary=summary)
|
||||
try:
|
||||
data = json.loads(out.scorecard_json)
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON decode error: {e}")
|
||||
print(f"Raw output: {out.scorecard_json}")
|
||||
# Return default scores if JSON parsing fails
|
||||
data = {"criteria": [], "total": 5.0}
|
||||
crits = []
|
||||
for item in data.get("criteria", []):
|
||||
name = item.get("name")
|
||||
if name not in CRITERIA: continue
|
||||
score = float(item.get("score", 5.0))
|
||||
score = max(0.0, min(10.0, score))
|
||||
rationale = item.get("rationale","")
|
||||
crits.append(Criterion(name=name, score=score, rationale=rationale))
|
||||
# Fill any missing criteria to maintain schema shape
|
||||
present = {c.name for c in crits}
|
||||
for name in CRITERIA:
|
||||
if name not in present:
|
||||
crits.append(Criterion(name=name, score=5.0, rationale="defaulted"))
|
||||
total = round(sum(c.score for c in crits)/len(crits), 2)
|
||||
return ScorecardV1(target_id="target:final", criteria=crits, total=total)
|
||||
|
||||
# --------------- Double-judge arbitration (optional) ---------------
|
||||
def judge_with_arbitration(summary: str) -> ScorecardV1:
|
||||
if not USE_DOUBLE_JUDGE:
|
||||
return JudgeScore()(summary=summary)
|
||||
j1 = JudgeScore()(summary=summary)
|
||||
j2 = JudgeScore()(summary=summary)
|
||||
# Simple tie-breaker: take the criterion-wise average if they differ by <=1.5, else choose the lower.
|
||||
merged = []
|
||||
for name in CRITERIA:
|
||||
c1 = next(c for c in j1.criteria if c.name==name)
|
||||
c2 = next(c for c in j2.criteria if c.name==name)
|
||||
diff = abs(c1.score - c2.score)
|
||||
score = (c1.score + c2.score)/2.0 if diff <= 1.5 else min(c1.score, c2.score)
|
||||
rationale = f"arb: {c1.rationale} | {c2.rationale}"
|
||||
merged.append(Criterion(name=name, score=round(score,1), rationale=rationale))
|
||||
total = round(sum(c.score for c in merged)/len(merged), 2)
|
||||
return ScorecardV1(target_id="target:final", criteria=merged, total=total)
|
||||
6
pyproject.toml
Normal file
6
pyproject.toml
Normal file
@@ -0,0 +1,6 @@
|
||||
[project]
|
||||
name = "jtbd-agent"
|
||||
version = "0.1.0"
|
||||
requires-python = ">=3.10"
|
||||
dependencies = ["pydantic>=2.7", "prefect>=3.0.0", "requests>=2.32", "dspy-ai>=2.5.12", "fastapi>=0.111", "uvicorn>=0.30", "modaic>=0.1", "opentelemetry-api>=1.27", "opentelemetry-sdk>=1.27", "opentelemetry-exporter-otlp>=1.27", "opentelemetry-instrumentation-fastapi>=0.48b0", "sse-starlette>=2.0"]
|
||||
|
||||
142
service/modaic_agent.py
Normal file
142
service/modaic_agent.py
Normal file
@@ -0,0 +1,142 @@
|
||||
"""Modaic-compatible JTBD DSPy agent with retriever integration."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import dspy
|
||||
from modaic import PrecompiledAgent, PrecompiledConfig, Retriever
|
||||
|
||||
from plugins.llm_dspy import (
|
||||
Deconstruct,
|
||||
Jobs,
|
||||
Moat,
|
||||
configure_lm,
|
||||
judge_with_arbitration,
|
||||
)
|
||||
from service.retrievers import NullRetriever
|
||||
|
||||
|
||||
configure_lm()
|
||||
|
||||
|
||||
class JTBDConfig(PrecompiledConfig):
|
||||
default_mode: str = "deconstruct"
|
||||
allow_freeform_route: bool = True
|
||||
return_json: bool = True
|
||||
|
||||
|
||||
class JTBDDSPyAgent(PrecompiledAgent):
|
||||
"""Agent exposing DSPy modules via Modaic's PrecompiledAgent interface."""
|
||||
|
||||
config: JTBDConfig
|
||||
|
||||
def __init__(self, config: Optional[JTBDConfig] = None, retriever: Optional[Retriever] = None, **kwargs):
|
||||
config = config or JTBDConfig()
|
||||
self.config = config
|
||||
self.retriever = retriever or NullRetriever()
|
||||
|
||||
self._deconstruct = Deconstruct()
|
||||
self._jobs = Jobs()
|
||||
self._moat = Moat()
|
||||
|
||||
super().__init__(config=config, retriever=self.retriever, **kwargs)
|
||||
|
||||
# ReAct agent that can call the retriever alongside core tools.
|
||||
self.react = dspy.ReAct(
|
||||
signature="question->answer",
|
||||
tools=[
|
||||
self.retriever.retrieve,
|
||||
self.deconstruct,
|
||||
self.jobs,
|
||||
self.moat,
|
||||
self.judge,
|
||||
],
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Public API
|
||||
# ------------------------------------------------------------------
|
||||
def __call__(self, query: str, **kwargs) -> str: # type: ignore[override]
|
||||
return self.forward(query, **kwargs)
|
||||
|
||||
def forward(self, query: str, **kwargs) -> str: # type: ignore[override]
|
||||
# Allow JSON envelopes to force tool dispatch.
|
||||
try:
|
||||
payload = json.loads(query)
|
||||
except Exception:
|
||||
payload = None
|
||||
|
||||
if isinstance(payload, dict) and "tool" in payload and "args" in payload:
|
||||
return self._dispatch(str(payload["tool"]), payload.get("args") or {})
|
||||
|
||||
if not self.config.allow_freeform_route:
|
||||
return self._dispatch(self.config.default_mode, {"query": query})
|
||||
|
||||
lowered = query.lower()
|
||||
if any(token in lowered for token in ("context", "note", "retriev")):
|
||||
context = self.retriever.retrieve(query)
|
||||
return self._as_json({"context": context})
|
||||
if any(token in lowered for token in ("assumption", "deconstruct")):
|
||||
return self.deconstruct(idea=query, hunches=[])
|
||||
if "jtbd" in lowered or "job" in lowered:
|
||||
return self.jobs(context={"prompt": query}, constraints=[])
|
||||
if any(token in lowered for token in ("moat", "defens")):
|
||||
return self.moat(concept=query, triggers="")
|
||||
if any(token in lowered for token in ("judge", "score", "evaluate")):
|
||||
return self.judge(summary=query)
|
||||
|
||||
return self._dispatch(self.config.default_mode, {"query": query})
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Tool wrappers
|
||||
# ------------------------------------------------------------------
|
||||
def deconstruct(self, idea: str, hunches: Optional[List[str]] = None) -> str:
|
||||
items = self._deconstruct(idea=idea, hunches=hunches or [])
|
||||
return self._as_json({"assumptions": [item.model_dump() for item in items]})
|
||||
|
||||
def jobs(self, context: Optional[Dict[str, Any]] = None, constraints: Optional[List[str]] = None) -> str:
|
||||
jobs = self._jobs(context=context or {}, constraints=constraints or [])
|
||||
return self._as_json({"jobs": [job.model_dump() for job in jobs]})
|
||||
|
||||
def moat(self, concept: str, triggers: Optional[str] = "") -> str:
|
||||
layers = self._moat(concept=concept, triggers=triggers or "")
|
||||
return self._as_json({"layers": [layer.model_dump() for layer in layers]})
|
||||
|
||||
def judge(self, summary: str) -> str:
|
||||
scorecard = judge_with_arbitration(summary=summary)
|
||||
return self._as_json({"scorecard": scorecard.model_dump()})
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _dispatch(self, tool: str, args: Dict[str, Any]) -> str:
|
||||
slug = tool.lower()
|
||||
if slug in {"retrieve", "retriever", "context"}:
|
||||
context = self.retriever.retrieve(args.get("query", ""))
|
||||
return self._as_json({"context": context})
|
||||
if slug == "deconstruct":
|
||||
return self.deconstruct(
|
||||
idea=args.get("idea", ""),
|
||||
hunches=args.get("hunches") or [],
|
||||
)
|
||||
if slug == "jobs":
|
||||
return self.jobs(
|
||||
context=args.get("context") or {},
|
||||
constraints=args.get("constraints") or [],
|
||||
)
|
||||
if slug == "moat":
|
||||
return self.moat(
|
||||
concept=args.get("concept", ""),
|
||||
triggers=args.get("triggers", ""),
|
||||
)
|
||||
if slug == "judge":
|
||||
return self.judge(summary=args.get("summary", ""))
|
||||
return self._as_json({"error": f"unknown tool '{tool}'"})
|
||||
|
||||
def _as_json(self, payload: Dict[str, Any]) -> str:
|
||||
if self.config.return_json:
|
||||
return json.dumps(payload)
|
||||
return str(payload)
|
||||
|
||||
73
service/retrievers.py
Normal file
73
service/retrievers.py
Normal file
@@ -0,0 +1,73 @@
|
||||
"""Retriever implementations used by the JTBD DSPy agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Iterable, List
|
||||
|
||||
from modaic import PrecompiledConfig, Retriever
|
||||
|
||||
|
||||
class NullRetrieverConfig(PrecompiledConfig):
|
||||
"""Configuration placeholder for the null retriever."""
|
||||
|
||||
|
||||
class NotesRetrieverConfig(PrecompiledConfig):
|
||||
"""Serializable configuration for the in-memory notes retriever."""
|
||||
|
||||
notes: List[str] = []
|
||||
top_k: int = 3
|
||||
|
||||
|
||||
class NullRetriever(Retriever):
|
||||
"""No-op retriever for environments without contextual data."""
|
||||
|
||||
config: NullRetrieverConfig
|
||||
|
||||
def __init__(self, config: NullRetrieverConfig | None = None, **kwargs):
|
||||
super().__init__(config or NullRetrieverConfig(), **kwargs)
|
||||
|
||||
def retrieve(self, query: str) -> str: # type: ignore[override]
|
||||
return ""
|
||||
|
||||
|
||||
class NotesRetriever(Retriever):
|
||||
"""Very small keyword-based retriever backed by an in-memory list of notes."""
|
||||
|
||||
config: NotesRetrieverConfig
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
notes: Iterable[str] | None = None,
|
||||
top_k: int | None = None,
|
||||
config: NotesRetrieverConfig | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
if config is None:
|
||||
cfg = NotesRetrieverConfig()
|
||||
cfg.notes = list(notes or [])
|
||||
if top_k is not None:
|
||||
cfg.top_k = int(top_k)
|
||||
else:
|
||||
cfg = config
|
||||
if notes is not None:
|
||||
cfg.notes = list(notes)
|
||||
if top_k is not None:
|
||||
cfg.top_k = int(top_k)
|
||||
|
||||
super().__init__(cfg, **kwargs)
|
||||
|
||||
def retrieve(self, query: str) -> str: # type: ignore[override]
|
||||
terms = {token for token in query.lower().split() if token}
|
||||
if not terms:
|
||||
return ""
|
||||
|
||||
scored: List[tuple[int, str]] = []
|
||||
for note in self.config.notes:
|
||||
tokens = {token for token in note.lower().split() if token}
|
||||
score = len(terms & tokens)
|
||||
if score > 0:
|
||||
scored.append((score, note))
|
||||
|
||||
scored.sort(key=lambda item: item[0], reverse=True)
|
||||
top_matches = [note for _, note in scored[: self.config.top_k]]
|
||||
return "\n".join(top_matches)
|
||||
41
tools/push_modaic_agent.py
Normal file
41
tools/push_modaic_agent.py
Normal file
@@ -0,0 +1,41 @@
|
||||
#!/usr/bin/env python
|
||||
"""Push the JTBD DSPy agent to Modaic Hub using environment variables."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
from service.modaic_agent import JTBDDSPyAgent, JTBDConfig
|
||||
from service.retrievers import NotesRetriever, NullRetriever
|
||||
|
||||
|
||||
def build_retriever():
|
||||
kind = os.getenv("RETRIEVER_KIND", "notes").lower()
|
||||
if kind == "notes":
|
||||
raw = os.getenv("RETRIEVER_NOTES", "")
|
||||
notes = [line for line in raw.splitlines() if line.strip()]
|
||||
return NotesRetriever(notes=notes or ["JTBD primer"])
|
||||
return NullRetriever()
|
||||
|
||||
|
||||
def main() -> int:
|
||||
agent_id = os.getenv("MODAIC_AGENT_ID")
|
||||
token = os.getenv("MODAIC_TOKEN")
|
||||
|
||||
if not agent_id:
|
||||
print("MODAIC_AGENT_ID is not set", file=sys.stderr)
|
||||
return 1
|
||||
if not token:
|
||||
print("MODAIC_TOKEN is not set", file=sys.stderr)
|
||||
return 1
|
||||
|
||||
agent = JTBDDSPyAgent(JTBDConfig(), retriever=build_retriever())
|
||||
agent.push_to_hub(agent_id, with_code=True)
|
||||
print(f"Agent pushed to Modaic Hub: {agent_id}")
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
|
||||
Reference in New Issue
Block a user