(no commit message)

This commit is contained in:
2025-10-19 14:16:34 -05:00
parent d33cef379c
commit c1847586be
13 changed files with 884 additions and 1 deletions

264
README.md
View File

@@ -1,2 +1,264 @@
# jtbd-agent
# JTBD Idea Validator
A **Jobs to be Done (JTBD)** analysis agent powered by DSPy that validates business ideas through comprehensive framework-based evaluation.
## What it does
This tool performs systematic business idea validation using JTBD methodology:
- **Assumption Deconstruction**: Extract and classify core business assumptions (1-3 levels)
- **JTBD Analysis**: Generate 5 distinct job statements with Four Forces (push/pull/anxiety/inertia)
- **Moat Analysis**: Assess competitive advantages using innovation layers
- **Scoring & Judgment**: Evaluate ideas across 5 criteria with detailed rationales
- **Validation Planning**: Create actionable plans for assumption testing
## Quick Start
```bash
# Setup environment
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -U pip
pip install -e .
# Configure LLM (required)
export OPENAI_API_KEY=... # for OpenAI models
export ANTHROPIC_API_KEY=... # for Claude models
# Run analysis on example
python run_direct.py examples/rehab_exercise_tracking_rich.json
# Or specify custom output location
python run_direct.py examples/insurance_photo_ai.json --output custom_reports/
```
## Output Files
The tool generates organized reports in timestamped directories:
- **Gamma Presentations**: `gamma/presentation.md` (Gamma-ready) + `gamma/presentation.html` (preview)
- **CSV Exports**: `csv/` - Structured data for spreadsheet analysis
- **JSON Data**: `json/analysis_data.json` - Raw analysis data
- **Charts**: `assets/` - Radar charts, waterfall charts, and Four Forces diagrams
## Technical Architecture
This implementation uses **DSPy** (Declarative Self-improving Language Programs) for structured LLM interactions through **Signatures** and **Modules**.
### DSPy Signatures
Signatures define input/output schemas for LLM tasks:
```python
class DeconstructSig(dspy.Signature):
"""Extract assumptions and classify levels.
Return JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]"""
idea: str = dspy.InputField()
hunches: List[str] = dspy.InputField()
assumptions_json: str = dspy.OutputField()
class JobsSig(dspy.Signature):
"""Generate 5 distinct JTBD statements with Four Forces each."""
context: str = dspy.InputField()
constraints: str = dspy.InputField()
jobs_json: str = dspy.OutputField()
```
### DSPy Modules
Modules implement business logic with automatic prompt optimization:
- **`Deconstruct`**: Extracts assumptions with confidence scoring
- **`Jobs`**: Generates JTBD statements with Four Forces analysis
- **`Moat`**: Applies Doblin innovation framework + strategic triggers
- **`JudgeScore`**: Evaluates ideas across 5 standardized criteria:
- Underserved Opportunity
- Strategic Impact
- Market Scale
- Solution Differentiability
- Business Model Innovation
### Dual-Judge Arbitration
The system uses two independent judges with tie-breaking for scoring reliability:
```python
USE_DOUBLE_JUDGE = os.getenv("JTBD_DOUBLE_JUDGE", "1") == "1" # default ON
def judge_with_arbitration(summary: str):
if USE_DOUBLE_JUDGE:
score1 = JudgeScore()(summary=summary)
score2 = JudgeScore()(summary=summary)
return merge_scores(score1, score2) # tie-breaker logic
return JudgeScore()(summary=summary)
```
## Configuration
**Model Selection**: Edit `plugins/llm_dspy.py``configure_lm()` or set `JTBD_DSPY_MODEL`:
```bash
export JTBD_DSPY_MODEL="gpt-4o-mini" # OpenAI
export JTBD_DSPY_MODEL="claude-3-5-sonnet-20240620" # Anthropic
```
**Other Options**:
- `JTBD_LLM_TEMPERATURE=0.2` - Response randomness (0.0-1.0)
- `JTBD_DOUBLE_JUDGE=1` - Enable dual-judge arbitration (default: enabled)
## Input Format
Ideas are defined in JSON files with the following structure:
```json
{
"idea_id": "urn:idea:example:001",
"title": "Your business idea title",
"hunches": [
"Key assumption about the problem",
"Belief about customer behavior",
"Market hypothesis"
],
"problem_statement": "Clear description of the problem",
"solution_overview": "How your idea solves the problem",
"target_customer": {
"primary": "Main customer segment",
"secondary": "Secondary users",
"demographics": "Age, profession, context"
},
"value_propositions": ["Key benefit 1", "Key benefit 2"],
"competitive_landscape": ["Competitor 1", "Competitor 2"],
"revenue_streams": ["Revenue model 1", "Revenue model 2"]
}
```
See `examples/` directory for complete examples.
## Alternative Execution Methods
### Direct Python Script
```bash
python run_direct.py your_idea.json
```
### FastAPI Service (Optional)
Run as a service with HTTP endpoints:
```bash
uvicorn service.dspy_sidecar:app --port 8088 --reload
```
Exposes endpoints: `/deconstruct`, `/jobs`, `/moat`, `/judge`
### Prefect Flow (Advanced)
For complex orchestration scenarios using the Prefect workflow engine.
## Advanced Features
### Judge Optimization with DSPy
The system supports **compiled judge models** using DSPy's GEPA optimizer (reflective prompt evolution):
```bash
# 1. Add training data to data/judge_train.jsonl
# Format: {"summary": "...", "scorecard": {"criteria":[...], "total": 6.7}}
# 2. Train the judge using GEPA (evolutionary optimizer)
python tools/optimize_judge.py --train data/judge_train.jsonl --out artifacts/judge_compiled.dspy --budget medium
# 3. Use the compiled judge (automatically loaded at runtime)
export JTBD_JUDGE_COMPILED=artifacts/judge_compiled.dspy
python run_direct.py your_idea.json
```
**GEPA** is an evolutionary optimizer for prompt optimization that:
- Captures full execution traces of DSPy modules
- Uses reflection to evolve text components (prompts/instructions)
- Allows textual feedback at predictor or system level
- Outperforms reinforcement learning approaches
From the actual implementation in `tools/optimize_judge.py`:
```python
from dspy.teleprompt import GEPA
def non_decreasing_metric(example, pred, trace=None, pred_name=None, pred_trace=None):
"""Returns 1 if predicted total >= gold total, else 0."""
try:
p = json.loads(pred.scorecard_json)
g = json.loads(example.scorecard_json)
return 1.0 if p.get("total",0) >= g.get("total",0) else 0.0
except Exception:
return 0.0
# Budget options: "light", "medium", "heavy"
tele = GEPA(metric=non_decreasing_metric, auto=budget)
compiled = tele.compile(dspy.Predict(JudgeScoreSig), trainset=train)
```
The compiled judge replaces the default `dspy.Predict` with an optimized program:
```python
_compiled_judge = None
if JUDGE_COMPILED_PATH and os.path.exists(JUDGE_COMPILED_PATH):
with open(JUDGE_COMPILED_PATH, "rb") as f:
_compiled_judge = pickle.load(f)
class JudgeScore(dspy.Module):
def __init__(self):
self.p = _compiled_judge or dspy.Predict(JudgeScoreSig) # fallback
```
### Environment Variables
- `OPENAI_API_KEY` / `ANTHROPIC_API_KEY` - API keys for LLM providers
- `JTBD_DSPY_MODEL` - Model name (default: "gpt-4o-mini")
- `JTBD_LLM_TEMPERATURE` - Temperature setting (default: 0.2)
- `JTBD_LLM_SEED` - Random seed for reproducibility (default: 42)
- `JTBD_DOUBLE_JUDGE` - Enable dual-judge arbitration (default: 1)
- `JTBD_JUDGE_COMPILED` - Path to compiled judge model
- `OTEL_SERVICE_NAME` / `DEPLOY_ENV` - Identify the service in OTLP exports (defaults: `jtbd-dspy-sidecar`, `dev`)
- `OTLP_ENDPOINT` / `OTLP_HEADERS` - Configure OTLP HTTP exporter endpoint and optional headers
- `MODAIC_AGENT_ID` / `MODAIC_AGENT_REV` - Load a precompiled Modaic agent instead of the local default
- `MODAIC_TOKEN` - Authentication token for private Modaic repositories
- `RETRIEVER_KIND` / `RETRIEVER_NOTES` - Retriever selection (e.g., `notes`) and seed data for contextual hints
- `API_BEARER_TOKEN` - Optional bearer token required by the FastAPI service
- `STREAM_CHUNK_SIZE` - Chunk size for SSE streaming responses (default: 60)
## Project Structure
```
├── contracts/ # Pydantic models (v1 frozen contracts)
├── core/ # Main business logic
│ ├── pipeline.py # Main analysis pipeline
│ ├── score.py # Scoring algorithms
│ ├── plan.py # Validation planning
│ └── export_*.py # Output formatters
├── plugins/ # External integrations
│ ├── llm_dspy.py # DSPy LLM interface
│ └── charts_quickchart.py # Chart generation
├── service/ # FastAPI service
├── orchestration/ # Prefect flows
├── examples/ # Sample business ideas
├── tools/ # Optimization utilities
└── run_direct.py # Main CLI entry point
```
## Dependencies
- **DSPy**: Language model orchestration framework
- **Pydantic**: Data validation and serialization
- **FastAPI/Uvicorn**: Optional HTTP service
- **Modaic**: Precompiled agent runtime with retriever support
- **OpenTelemetry**: Request tracing + OTLP exporter (service observability)
- **sse-starlette**: Server-Sent Events streaming for OpenAI-compatible responses
- **Prefect**: Optional workflow orchestration
- **Requests**: HTTP client for external services
## Contract Stability
Data contracts in `contracts/*_v1.py` are frozen. For changes, create new `v2` versions rather than modifying existing contracts to ensure backward compatibility.

136
agent.json Normal file
View File

@@ -0,0 +1,136 @@
{
"_deconstruct.p": {
"traces": [],
"train": [],
"demos": [],
"signature": {
"instructions": "Extract assumptions and classify levels.\nReturn JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]",
"fields": [
{
"prefix": "Idea:",
"description": "${idea}"
},
{
"prefix": "Hunches:",
"description": "${hunches}"
},
{
"prefix": "Assumptions Json:",
"description": "${assumptions_json}"
}
]
},
"lm": null
},
"_jobs.p": {
"traces": [],
"train": [],
"demos": [],
"signature": {
"instructions": "Generate 5 distinct JTBD statements with Four Forces (push/pull/anxiety/inertia) each.\nReturn JSON list: [{statement, forces:{push:[], pull:[], anxiety:[], inertia:[]}}]",
"fields": [
{
"prefix": "Context:",
"description": "${context}"
},
{
"prefix": "Constraints:",
"description": "${constraints}"
},
{
"prefix": "Jobs Json:",
"description": "${jobs_json}"
}
]
},
"lm": null
},
"_moat.p": {
"traces": [],
"train": [],
"demos": [],
"signature": {
"instructions": "Apply Doblin/10-types + timing/ops/customer/value triggers to strengthen concept.\nReturn JSON list: [{type, trigger, effect}]",
"fields": [
{
"prefix": "Concept:",
"description": "${concept}"
},
{
"prefix": "Triggers:",
"description": "${triggers}"
},
{
"prefix": "Layers Json:",
"description": "${layers_json}"
}
]
},
"lm": null
},
"react.react": {
"traces": [],
"train": [],
"demos": [],
"signature": {
"instructions": "Given the fields `question`, produce the fields `answer`.\n\nYou are an Agent. In each episode, you will be given the fields `question` as input. And you can see your past trajectory so far.\nYour goal is to use one or more of the supplied tools to collect any necessary information for producing `answer`.\n\nTo do this, you will interleave next_thought, next_tool_name, and next_tool_args in each turn, and also when finishing the task.\nAfter each tool call, you receive a resulting observation, which gets appended to your trajectory.\n\nWhen writing next_thought, you may reason about the current situation and plan for future steps.\nWhen selecting the next_tool_name and its next_tool_args, the tool must be one of:\n\n(1) retrieve. It takes arguments {'query': {'type': 'string'}}.\n(2) deconstruct. It takes arguments {'idea': {'type': 'string'}, 'hunches': {'anyOf': [{'items': {'type': 'string'}, 'type': 'array'}, {'type': 'null'}], 'default': None}}.\n(3) jobs. It takes arguments {'context': {'anyOf': [{'additionalProperties': True, 'type': 'object'}, {'type': 'null'}], 'default': None}, 'constraints': {'anyOf': [{'items': {'type': 'string'}, 'type': 'array'}, {'type': 'null'}], 'default': None}}.\n(4) moat. It takes arguments {'concept': {'type': 'string'}, 'triggers': {'anyOf': [{'type': 'string'}, {'type': 'null'}], 'default': ''}}.\n(5) judge. It takes arguments {'summary': {'type': 'string'}}.\n(6) finish, whose description is <desc>Marks the task as complete. That is, signals that all information for producing the outputs, i.e. `answer`, are now available to be extracted.</desc>. It takes arguments {}.\nWhen providing `next_tool_args`, the value inside the field must be in JSON format",
"fields": [
{
"prefix": "Question:",
"description": "${question}"
},
{
"prefix": "Trajectory:",
"description": "${trajectory}"
},
{
"prefix": "Next Thought:",
"description": "${next_thought}"
},
{
"prefix": "Next Tool Name:",
"description": "${next_tool_name}"
},
{
"prefix": "Next Tool Args:",
"description": "${next_tool_args}"
}
]
},
"lm": null
},
"react.extract.predict": {
"traces": [],
"train": [],
"demos": [],
"signature": {
"instructions": "Given the fields `question`, produce the fields `answer`.",
"fields": [
{
"prefix": "Question:",
"description": "${question}"
},
{
"prefix": "Trajectory:",
"description": "${trajectory}"
},
{
"prefix": "Reasoning: Let's think step by step in order to",
"description": "${reasoning}"
},
{
"prefix": "Answer:",
"description": "${answer}"
}
]
},
"lm": null
},
"metadata": {
"dependency_versions": {
"python": "3.10",
"dspy": "3.0.3",
"cloudpickle": "3.1"
}
}
}

5
auto_classes.json Normal file
View File

@@ -0,0 +1,5 @@
{
"AutoConfig": "service.modaic_agent.JTBDConfig",
"AutoAgent": "service.modaic_agent.JTBDDSPyAgent",
"AutoRetriever": "service.retrievers.NotesRetriever"
}

5
config.json Normal file
View File

@@ -0,0 +1,5 @@
{
"default_mode": "deconstruct",
"allow_freeform_route": true,
"return_json": true
}

View File

@@ -0,0 +1,11 @@
from pydantic import BaseModel, Field, ConfigDict
from typing import List, Optional
class AssumptionV1(BaseModel):
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
assumption_id: str
text: str
level: int = Field(ge=1, le=3, description="1=observed,2=educated,3=strategic")
confidence: float = Field(ge=0.0, le=1.0)
evidence: List[str] = []
validation_exp_id: Optional[str] = None

View File

@@ -0,0 +1,7 @@
from pydantic import BaseModel, ConfigDict
class InnovationLayerV1(BaseModel):
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
layer_id: str
type: str
trigger: str
effect: str

8
contracts/job_v1.py Normal file
View File

@@ -0,0 +1,8 @@
from pydantic import BaseModel, ConfigDict
from typing import Dict, List
class JobV1(BaseModel):
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
job_id: str
statement: str
forces: Dict[str, List[str]] # push/pull/anxiety/inertia

14
contracts/scorecard_v1.py Normal file
View File

@@ -0,0 +1,14 @@
from pydantic import BaseModel, Field, ConfigDict
from typing import List
class Criterion(BaseModel):
name: str
score: float = Field(ge=0, le=10)
rationale: str
class ScorecardV1(BaseModel):
model_config = ConfigDict(extra='forbid', frozen=True, strict=True)
target_id: str
scheme: str = "v1"
criteria: List[Criterion]
total: float = Field(ge=0, le=10)

173
plugins/llm_dspy.py Normal file
View File

@@ -0,0 +1,173 @@
import os, json, hashlib, random
import dspy
from typing import List, Dict, Tuple
from contracts.assumption_v1 import AssumptionV1
from contracts.job_v1 import JobV1
from contracts.scorecard_v1 import ScorecardV1, Criterion
from contracts.innovation_layer_v1 import InnovationLayerV1
TEMPERATURE = float(os.getenv("JTBD_LLM_TEMPERATURE", "0.2"))
SEED = int(os.getenv("JTBD_LLM_SEED", "42"))
USE_DOUBLE_JUDGE = os.getenv("JTBD_DOUBLE_JUDGE", "1") == "1" # default ON
def _uid(s: str) -> str:
return hashlib.sha1(s.encode()).hexdigest()[:10]
def configure_lm():
"""Configure DSPy global LLM. Edit model name here to your provider choice."""
model = os.getenv("JTBD_DSPY_MODEL", "gpt-4o-mini")
# Check if it's a Claude model
if "claude" in model.lower():
try:
lm = dspy.Anthropic(model=model, max_tokens=4000, temperature=TEMPERATURE)
except Exception:
# Fallback to generic LM
lm = dspy.LM(model=model, max_tokens=4000, temperature=TEMPERATURE)
else:
# Try OpenAI first
try:
lm = dspy.OpenAI(model=model, max_tokens=4000, temperature=TEMPERATURE, seed=SEED)
except Exception:
# Fallback to a generic LM
lm = dspy.LM(model=model, max_tokens=4000, temperature=TEMPERATURE)
dspy.configure(lm=lm)
# ---------------- Signatures ----------------
class DeconstructSig(dspy.Signature):
"""Extract assumptions and classify levels.
Return JSON list of objects: [{text, level(1..3), confidence, evidence:[]}]"""
idea: str = dspy.InputField()
hunches: List[str] = dspy.InputField()
assumptions_json: str = dspy.OutputField()
class JobsSig(dspy.Signature):
"""Generate 5 distinct JTBD statements with Four Forces (push/pull/anxiety/inertia) each.
Return JSON list: [{statement, forces:{push:[], pull:[], anxiety:[], inertia:[]}}]"""
context: str = dspy.InputField()
constraints: str = dspy.InputField()
jobs_json: str = dspy.OutputField()
class MoatSig(dspy.Signature):
"""Apply Doblin/10-types + timing/ops/customer/value triggers to strengthen concept.
Return JSON list: [{type, trigger, effect}]"""
concept: str = dspy.InputField()
triggers: str = dspy.InputField()
layers_json: str = dspy.OutputField()
class JudgeScoreSig(dspy.Signature):
"""Score business idea on exactly these 5 criteria (0-10 scale) with rationales.
Return JSON: {"criteria":[{"name":"Underserved Opportunity","score":7.0,"rationale":"Clear need exists..."}, {"name":"Strategic Impact","score":6.0,"rationale":"..."}, {"name":"Market Scale","score":8.0,"rationale":"..."}, {"name":"Solution Differentiability","score":5.0,"rationale":"..."}, {"name":"Business Model Innovation","score":7.0,"rationale":"..."}], "total":6.6}"""
summary: str = dspy.InputField()
scorecard_json: str = dspy.OutputField()
# ---------------- Modules ----------------
class Deconstruct(dspy.Module):
def __init__(self): super().__init__(); self.p = dspy.Predict(DeconstructSig)
def forward(self, idea: str, hunches: List[str]):
out = self.p(idea=idea, hunches=hunches)
data = json.loads(out.assumptions_json)
# post-process: bound / defaults
items = []
for obj in data[:8]:
text = obj.get("text","").strip()
if not text: continue
level = int(obj.get("level", 2))
level = 1 if level < 1 else 3 if level > 3 else level
conf = float(obj.get("confidence", 0.6))
conf = max(0.0, min(1.0, conf))
items.append(AssumptionV1(
assumption_id=f"assump:{_uid(text)}", text=text, level=level, confidence=conf,
evidence=[e for e in obj.get("evidence", []) if isinstance(e, str)]
))
return items
class Jobs(dspy.Module):
def __init__(self): super().__init__(); self.p = dspy.Predict(JobsSig)
def forward(self, context: Dict[str,str], constraints: List[str]):
out = self.p(context=json.dumps(context), constraints=json.dumps(constraints))
arr = json.loads(out.jobs_json)
jobs = []
seen = set()
for obj in arr[:12]:
stmt = obj.get("statement","").strip()
if not stmt or stmt in seen: continue
seen.add(stmt)
forces = obj.get("forces",{}) or {}
for k in ["push","pull","anxiety","inertia"]:
forces.setdefault(k, [])
jobs.append(JobV1(job_id=f"job:{_uid(stmt)}", statement=stmt, forces=forces))
if len(jobs) >= 5: break
return jobs
class Moat(dspy.Module):
def __init__(self): super().__init__(); self.p = dspy.Predict(MoatSig)
def forward(self, concept: str, triggers: str):
out = self.p(concept=concept, triggers=triggers)
arr = json.loads(out.layers_json)
layers = []
for obj in arr[:6]:
t = str(obj.get("type","")).strip()
tr = str(obj.get("trigger","")).strip()
ef = str(obj.get("effect","")).strip()
if not t or not tr or not ef: continue
layers.append(InnovationLayerV1(layer_id=f"layer:{_uid(t+tr+ef)}", type=t, trigger=tr, effect=ef))
return layers
CRITERIA = ["Underserved Opportunity","Strategic Impact","Market Scale","Solution Differentiability","Business Model Innovation"]
import pickle
JUDGE_COMPILED_PATH = os.getenv("JTBD_JUDGE_COMPILED")
_compiled_judge = None
if JUDGE_COMPILED_PATH and os.path.exists(JUDGE_COMPILED_PATH):
try:
with open(JUDGE_COMPILED_PATH, "rb") as f:
_compiled_judge = pickle.load(f)
except Exception:
_compiled_judge = None
class JudgeScore(dspy.Module):
def __init__(self): super().__init__(); self.p = _compiled_judge or dspy.Predict(JudgeScoreSig)
def forward(self, summary: str):
out = self.p(summary=summary)
try:
data = json.loads(out.scorecard_json)
except json.JSONDecodeError as e:
print(f"JSON decode error: {e}")
print(f"Raw output: {out.scorecard_json}")
# Return default scores if JSON parsing fails
data = {"criteria": [], "total": 5.0}
crits = []
for item in data.get("criteria", []):
name = item.get("name")
if name not in CRITERIA: continue
score = float(item.get("score", 5.0))
score = max(0.0, min(10.0, score))
rationale = item.get("rationale","")
crits.append(Criterion(name=name, score=score, rationale=rationale))
# Fill any missing criteria to maintain schema shape
present = {c.name for c in crits}
for name in CRITERIA:
if name not in present:
crits.append(Criterion(name=name, score=5.0, rationale="defaulted"))
total = round(sum(c.score for c in crits)/len(crits), 2)
return ScorecardV1(target_id="target:final", criteria=crits, total=total)
# --------------- Double-judge arbitration (optional) ---------------
def judge_with_arbitration(summary: str) -> ScorecardV1:
if not USE_DOUBLE_JUDGE:
return JudgeScore()(summary=summary)
j1 = JudgeScore()(summary=summary)
j2 = JudgeScore()(summary=summary)
# Simple tie-breaker: take the criterion-wise average if they differ by <=1.5, else choose the lower.
merged = []
for name in CRITERIA:
c1 = next(c for c in j1.criteria if c.name==name)
c2 = next(c for c in j2.criteria if c.name==name)
diff = abs(c1.score - c2.score)
score = (c1.score + c2.score)/2.0 if diff <= 1.5 else min(c1.score, c2.score)
rationale = f"arb: {c1.rationale} | {c2.rationale}"
merged.append(Criterion(name=name, score=round(score,1), rationale=rationale))
total = round(sum(c.score for c in merged)/len(merged), 2)
return ScorecardV1(target_id="target:final", criteria=merged, total=total)

6
pyproject.toml Normal file
View File

@@ -0,0 +1,6 @@
[project]
name = "jtbd-agent"
version = "0.1.0"
requires-python = ">=3.10"
dependencies = ["pydantic>=2.7", "prefect>=3.0.0", "requests>=2.32", "dspy-ai>=2.5.12", "fastapi>=0.111", "uvicorn>=0.30", "modaic>=0.1", "opentelemetry-api>=1.27", "opentelemetry-sdk>=1.27", "opentelemetry-exporter-otlp>=1.27", "opentelemetry-instrumentation-fastapi>=0.48b0", "sse-starlette>=2.0"]

142
service/modaic_agent.py Normal file
View File

@@ -0,0 +1,142 @@
"""Modaic-compatible JTBD DSPy agent with retriever integration."""
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
import dspy
from modaic import PrecompiledAgent, PrecompiledConfig, Retriever
from plugins.llm_dspy import (
Deconstruct,
Jobs,
Moat,
configure_lm,
judge_with_arbitration,
)
from service.retrievers import NullRetriever
configure_lm()
class JTBDConfig(PrecompiledConfig):
default_mode: str = "deconstruct"
allow_freeform_route: bool = True
return_json: bool = True
class JTBDDSPyAgent(PrecompiledAgent):
"""Agent exposing DSPy modules via Modaic's PrecompiledAgent interface."""
config: JTBDConfig
def __init__(self, config: Optional[JTBDConfig] = None, retriever: Optional[Retriever] = None, **kwargs):
config = config or JTBDConfig()
self.config = config
self.retriever = retriever or NullRetriever()
self._deconstruct = Deconstruct()
self._jobs = Jobs()
self._moat = Moat()
super().__init__(config=config, retriever=self.retriever, **kwargs)
# ReAct agent that can call the retriever alongside core tools.
self.react = dspy.ReAct(
signature="question->answer",
tools=[
self.retriever.retrieve,
self.deconstruct,
self.jobs,
self.moat,
self.judge,
],
)
# ------------------------------------------------------------------
# Public API
# ------------------------------------------------------------------
def __call__(self, query: str, **kwargs) -> str: # type: ignore[override]
return self.forward(query, **kwargs)
def forward(self, query: str, **kwargs) -> str: # type: ignore[override]
# Allow JSON envelopes to force tool dispatch.
try:
payload = json.loads(query)
except Exception:
payload = None
if isinstance(payload, dict) and "tool" in payload and "args" in payload:
return self._dispatch(str(payload["tool"]), payload.get("args") or {})
if not self.config.allow_freeform_route:
return self._dispatch(self.config.default_mode, {"query": query})
lowered = query.lower()
if any(token in lowered for token in ("context", "note", "retriev")):
context = self.retriever.retrieve(query)
return self._as_json({"context": context})
if any(token in lowered for token in ("assumption", "deconstruct")):
return self.deconstruct(idea=query, hunches=[])
if "jtbd" in lowered or "job" in lowered:
return self.jobs(context={"prompt": query}, constraints=[])
if any(token in lowered for token in ("moat", "defens")):
return self.moat(concept=query, triggers="")
if any(token in lowered for token in ("judge", "score", "evaluate")):
return self.judge(summary=query)
return self._dispatch(self.config.default_mode, {"query": query})
# ------------------------------------------------------------------
# Tool wrappers
# ------------------------------------------------------------------
def deconstruct(self, idea: str, hunches: Optional[List[str]] = None) -> str:
items = self._deconstruct(idea=idea, hunches=hunches or [])
return self._as_json({"assumptions": [item.model_dump() for item in items]})
def jobs(self, context: Optional[Dict[str, Any]] = None, constraints: Optional[List[str]] = None) -> str:
jobs = self._jobs(context=context or {}, constraints=constraints or [])
return self._as_json({"jobs": [job.model_dump() for job in jobs]})
def moat(self, concept: str, triggers: Optional[str] = "") -> str:
layers = self._moat(concept=concept, triggers=triggers or "")
return self._as_json({"layers": [layer.model_dump() for layer in layers]})
def judge(self, summary: str) -> str:
scorecard = judge_with_arbitration(summary=summary)
return self._as_json({"scorecard": scorecard.model_dump()})
# ------------------------------------------------------------------
# Helpers
# ------------------------------------------------------------------
def _dispatch(self, tool: str, args: Dict[str, Any]) -> str:
slug = tool.lower()
if slug in {"retrieve", "retriever", "context"}:
context = self.retriever.retrieve(args.get("query", ""))
return self._as_json({"context": context})
if slug == "deconstruct":
return self.deconstruct(
idea=args.get("idea", ""),
hunches=args.get("hunches") or [],
)
if slug == "jobs":
return self.jobs(
context=args.get("context") or {},
constraints=args.get("constraints") or [],
)
if slug == "moat":
return self.moat(
concept=args.get("concept", ""),
triggers=args.get("triggers", ""),
)
if slug == "judge":
return self.judge(summary=args.get("summary", ""))
return self._as_json({"error": f"unknown tool '{tool}'"})
def _as_json(self, payload: Dict[str, Any]) -> str:
if self.config.return_json:
return json.dumps(payload)
return str(payload)

73
service/retrievers.py Normal file
View File

@@ -0,0 +1,73 @@
"""Retriever implementations used by the JTBD DSPy agent."""
from __future__ import annotations
from typing import Iterable, List
from modaic import PrecompiledConfig, Retriever
class NullRetrieverConfig(PrecompiledConfig):
"""Configuration placeholder for the null retriever."""
class NotesRetrieverConfig(PrecompiledConfig):
"""Serializable configuration for the in-memory notes retriever."""
notes: List[str] = []
top_k: int = 3
class NullRetriever(Retriever):
"""No-op retriever for environments without contextual data."""
config: NullRetrieverConfig
def __init__(self, config: NullRetrieverConfig | None = None, **kwargs):
super().__init__(config or NullRetrieverConfig(), **kwargs)
def retrieve(self, query: str) -> str: # type: ignore[override]
return ""
class NotesRetriever(Retriever):
"""Very small keyword-based retriever backed by an in-memory list of notes."""
config: NotesRetrieverConfig
def __init__(
self,
notes: Iterable[str] | None = None,
top_k: int | None = None,
config: NotesRetrieverConfig | None = None,
**kwargs,
):
if config is None:
cfg = NotesRetrieverConfig()
cfg.notes = list(notes or [])
if top_k is not None:
cfg.top_k = int(top_k)
else:
cfg = config
if notes is not None:
cfg.notes = list(notes)
if top_k is not None:
cfg.top_k = int(top_k)
super().__init__(cfg, **kwargs)
def retrieve(self, query: str) -> str: # type: ignore[override]
terms = {token for token in query.lower().split() if token}
if not terms:
return ""
scored: List[tuple[int, str]] = []
for note in self.config.notes:
tokens = {token for token in note.lower().split() if token}
score = len(terms & tokens)
if score > 0:
scored.append((score, note))
scored.sort(key=lambda item: item[0], reverse=True)
top_matches = [note for _, note in scored[: self.config.top_k]]
return "\n".join(top_matches)

View File

@@ -0,0 +1,41 @@
#!/usr/bin/env python
"""Push the JTBD DSPy agent to Modaic Hub using environment variables."""
from __future__ import annotations
import os
import sys
from service.modaic_agent import JTBDDSPyAgent, JTBDConfig
from service.retrievers import NotesRetriever, NullRetriever
def build_retriever():
kind = os.getenv("RETRIEVER_KIND", "notes").lower()
if kind == "notes":
raw = os.getenv("RETRIEVER_NOTES", "")
notes = [line for line in raw.splitlines() if line.strip()]
return NotesRetriever(notes=notes or ["JTBD primer"])
return NullRetriever()
def main() -> int:
agent_id = os.getenv("MODAIC_AGENT_ID")
token = os.getenv("MODAIC_TOKEN")
if not agent_id:
print("MODAIC_AGENT_ID is not set", file=sys.stderr)
return 1
if not token:
print("MODAIC_TOKEN is not set", file=sys.stderr)
return 1
agent = JTBDDSPyAgent(JTBDConfig(), retriever=build_retriever())
agent.push_to_hub(agent_id, with_code=True)
print(f"Agent pushed to Modaic Hub: {agent_id}")
return 0
if __name__ == "__main__":
raise SystemExit(main())